Summary of the session: Experimenting, Corrosion and Mass Transfer

B.Pint

First session Tuesday PM

- Chrisitian LATGE, CEA: Sodium coolant: Chemistry, quality control and inservice on-line monitoring
 - Overview of sodium fast reactor technology
 - Sodium purification is extremely important, <3ppm O
 - Starting purity and remove "pollution" during operation
 - Review of cold trap and impurity monitoring technology evolution
- Natalia KHARITONOVA, MEPHI (virtual): Some coolant chemistry issues for corrosion mitigation strategy in advanced fission reactors
 - Discussed protective oxides formed in HLM (Heavy Liquid Metals: Pb, PbBi) and SCWR (Supercritical water reactors, different from fossil systems)
 - Chemistry control with time to maintain oxides: O/H addition to control O potential
 - Regulatory rules cover these issues and regulations are evolving

First session Tuesday PM, continued

- Martina MOLINARI, Sapienza University of Rome: Water chemistry control as a corrosion mitigation strategy
 - Experimental work in flowing water at high temperature and pressure
 - 100 bar, 300°C: Eurofer97 and 316L, change KOH and O₂ content
 - Attack increased with O₂ content but no localized attack
- Andrea M. JOKISAARI, INL, USA: Corrosion testing needs and considerations for additively manufactured materials in nuclear reactors
 - Additive manufacturing (AM) may enable future NPP and FPP
 - US NRC has AM technical action plan
 - Current research program focusing on type 316 stainless steel
 - Experimental work in the context of codes and standards
 - AM concern about surface finish and microstructure changes impact on corrosion

First session Tuesday PM, continued

- Alberto UBALDINI, ENEA, Italy: Experimental investigation of corrosion of nuclear materials & radioisotopes release under aggressive leaching conditions
 - Concern about the effect of radiation on aqueous corrosion
 - Difficult to study experimentally in the laboratory
 - H₂O₂ to simulate radiolysis: 30% peroxide at 70°C
 - Rapid attack of Mo, also Fe and W
- Rueben M. HOLMS, Kyoto Fusioneering, Japan: Kyoto Fusioneering: materials compatibility testing facilities
 - Multinational company founded in 2019, 100+ employees
 - Supporting companies develop FPP
 - High temperature SCYLLA blanket concept: SiC/SiC composites
 - UNITY-1: forced convection FLiBe loop facility, ≤1000°C, 4T magnet

First session Tuesday PM, continued

- Viktor RUKOSUEV, MEPhI, Russia (virtual): Corrosion of Uranium Dicilicide in Vapour under Simulated PWR Conditions
 - Studying U₃Si₂ in high temperature and high pressure water
 - Formation of UO₂ causes disintegration of silicide at 350°-450°C
 - May be OK for 24 h at 350°C

Second session Wednesday AM

- Bruce PINT, ORNL, USA: Overview of recent compatibility assessments in flowing experiments: Sn, Li, Pb-Li and molten salts
 - Overview of liquid metals and molten salts issues for fusion
 - Salt purification critical for good compatibility
 - Fission experience with low Cr, Ni-based alloys in FLiBe salt not FPP relevant
 - Modeling behavior of Fe-based alloys in Cl and F salts
- Jinsuo ZHANG, Virginia Tech: Corrosion Tests of SS 316 in Static and Flowing U-bearing Fluoride Salts
 - FUNaK salt purified by HF, Ar-H₂, electrochemistry (purification is essential)
 - Spinning test 2-4 m/s: Fe and Cr deposited on glassy carbon crucible
 - Tested perform in Ar glovebox at 650°C
 - Small pits in 316 after exposure to flowing salt

Second session Wednesday AM, continued

- Uttam JAIN, BARC, India: Compatibility of Alumina with Eutectic Pb-Li
 - Patent for making Pb-Li using LiCl as Li source
 - Alumina evaluated at 450°-550°C in Pb-Li
 - After 48h/550°C, see LiAlO2, not at lower temperature
- M. IZERROUKEN, Nuclear research centre of Draria, Algeria: Radiation damage effect on structural and mechanical properties of inert ZrN layer: corrosion mitigation in LBE Cooling environment
 - Zr-30N as a barrier between U-Mo and Al
 - Proton irradiated 700 nm thick coating
 - Change in surface roughness after irradiation

Second session Wednesday AM, continued

- Jinsuo ZHANG, Virginia Tech: Lessons learned from operation of a forced convection chloride molten salt
 - Testing 316 and 709 in flowing MgCl₂+KCl+NaCl at 650°C
 - More attack on 709 than 316; deeper attack in static salt (no surface metal loss)
 - Issues with valve, weld failure and pump: challenging to run salt loop!
- Marco UTILI, ENEA, Italy: Borated water chemistry control for DTT vacuum vessel
 - Borated water for neutron shielding during high performance phase of DTT
 - H₃BO₃: 8000ppm B, 95%¹⁰B, pH=3.6
 - 12 week tests
 - Li (5.7 and 57 ppm) and K can increase pH and reduce corrosion
 - More susceptible to cracking after exposure to borated water
 - Used Gaspirini data (Thurs. presentation) for OSCAR model predictions

Second session Wednesday AM, continued

- X.CHEN, KIT, Germany: Simulation of gas injection into liquid with SIMMER
 - 2D and 3D SIMMER code developed at JAEA, CEA and KIT
 - Experiments of gas in water to evaluate code
 - Calculated void fraction higher than experiments
 - SIMMER gives narrower plume than experiment

General thoughts

- Synergy evident for water chemistry issues in NPP and FPP
 - Similar issues, concepts and computer codes
- Extensive experience with SFRs
 - Na not a candidate for FPP, but general concepts of impurity control, etc. relevant to developing FPP with Li or Pb-Li
- Synergy with understanding additive manufacturing potential NPP/FPP