

The water cooled performance for fission and fusion reactors

Dr. Tarek Farouk Nagla

Eng. Mohamed ELMESAWY

Nuclear Power Plants Authority, Cairo , Egypt.2023

Tarek_Nagla@yahoo.com

Tarek Farouk Nagla

Research Scientist, Ph.D. Process Simulation

Mobile : +02 01003353575 E-mail : Tarek_Nagla@yahoo.com

NUCLEAR POWER PLANTS AUTHORITY

4,EL_NASR AVENUE-NASR CITY, P.O.BOX:8191 CODE NO. 11371 NASR CITY, CAIRO, EGYPT.

PHONE: 02-22616270 FAX : 02-2633536

Important unique properties of water are as follows:

- 1. Molecular Structure and Properties
- 2. Isotopic Content
- 3. Latent Heat and Specific Heat
- 4. Density Relationships
- 5. Viscosity-Density Relationships
- 6. Surface Tension
- 7. Transparency
- 8. Pressure
- 9. Salinity
- 10. Water Current
- 11. As Universal Solvent

Thermodynamic Properties of Water and Steam

FIGURE A-9

T-s diagram for water.

Copyright @ 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

TABLE

Temp. rature °C	Pressure Pa	Density kg/m ³	Enthalpy kJ/kg	Heat capacity kJ/(kg·K)	Specific heat kJ/kg	Thermal conductivity 10 ³ W/(m·K)	Dynamic viscosity 10 ⁶ (Pa·s)	Kinematic viscosity 10 ⁶ (m ² /s)	Thermal diffusivity $10^{6}(m^{2}/s)$	Prandtl number
				IAEA-Techn Between Fusion Fac	ical Meetin Coolants a	g on Compatibil Ind Materials for Advanced Fissio	ity n			٤

Reactors Dr-Tarek Nagla 2023

Basic Design of a PWR - Overview OF THE Three Main Circuits

WWER-1000

PWR NPP thermodynamic and heat balance analysis.

Typical Fuel Assembly in LWR Reactors

Fuel assemblies vary with manufacturer and over time

IAEA-Technical Meeting on Compatibility Between Coolants and Materials for Fusion Facilities and Advanced Fission Reactors Dr-Tarek Nagla 2023 12

PWR

Boric Acid Corrosion of Carbon Steel Reactor Pressure Boundary Components in PWR Plants

Corrosion and deposition on the secondary circuit of steam generators steam putlet

general corrosion, stress corrosion cracking, pitting corrosion, stainless steels, nickel base alloys safety, security, reliability,

PWR

pH control curves: (a) modified chemistry regime and (b) elevated pHT regime at 307 °C [5].

Zinc Water Chemistry

PWR

Table pH control PWR plant is recommended for boron-free operation

Ammonia-Based Water

Table pH control PWR plant is recommended for boron-free operation

Chemistry parameter	Normal range
pH at 286.5 ℃	6.9 - 7.4
pH at 25 °C	9.6 - 10.1
Potassium, ppm	1.7 – 5.0
Ammonia, ppm	≤2.0
Dissolved Hydrogen, cc/kg H2O	25 - 50
Dissolved Oxygen, ppm	≤0.005

Potassium-Based Water Chemistry

Lithium Water Chemistry

PWR as change of primary coolant chemistry for long-term fuel cycle

Typically, 12-month fuel cycles begin with no more than 1200 ppm boron at a start of a cycle, so the maximum of 2.2 ppm lithium is required to satisfy the requirement of pH 6.9 (Fig.). Long-term fuel cyclesof 18 or 24 months have forced chemistry personnel to select an operating pH regimethat minimizes "negative effects" rather than maximizes "the benefits"

PWR Neutron Activation of Coolant Water

Radiolysis is the dissociation of molecules by ionizing radiation. It is the cleavage of one or several chemical bonds resulting from exposure to high-energy flux.

Isotope	Natural Abundance[%]	Reaction	Activation product	t _{1/2} [s]	Decay products	m
¹⁶ O	99.76	(n , p)	¹⁶ N	7.13	2.742 MeV gamma (1%) 6.129 MeV gamma (67%) 7.115 MeV gamma (5%)	H ₂ O
¹⁷ O	0.04	(n , p)	¹⁷ N	4.14	0.383 MeV neutron (35%) 0.884 MeV neutron (1%) 1.171 MeV neutron (53%) 1.700MevV neutron (7%) 0.110 MeV neutron (3%)	H' + OH H_2O_1 H_2O_2 H_2O_2 H_2O_2 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 H_2O_1 H_2O_2 $H_2O_$
¹⁸ O	0.04	(n,γ)	¹⁹ O	26.9	0.197 MeV gamma (63%) 1.357 MeV gamma (33%) 1.444 MeV gamma (3%)	Radiolytical decomposition of water

Table - Summarized data of activated isotopes of cooling waterobtained from ENDF/B-VII.1 data library

IAEA-Technical Meeting on Compatibility Between Coolants and Materials for Fusion Facilities and Advanced Fission Reactors Dr-Tarek Nagla 2023 ١٤

17N and gamma dose field due to decay of isotope 190

Evolution of ACR Physics from CANDU 6

Major Differences between CANDU 6 and ACR

- Coolant
 - CANDU 6 (D₂O)
 - ACR (H₂O)
- Fuel
 - CANDU 6 (NU in 37-element bundle)
 - ACR (2.0 % SEU in 42 pins, Central Pin Dy/NU, CANFLEX bundle)

Advanced Power Reactor 1400 MWe

Korea Electric Power Corporation (KEPCO) and Korea Hydro & Nuclear Power Co., Ltd. (KHNP)

Advanced Passive

AP1000 MWe

Passive Safety Systems

Japan's DEMO

Cooling Water System design for fusion Tokamak Reactor

Component	Temperature	Pressure	Thermal energy
Blanket	290–325 °C	15.5 MPa	1574 MW
Divertor (RAFM)	290–325 °C	15.5 MPa	291 MW
Divertor (Cu-alloy)	200–230 °C	5 MPa	172 MW
Back plate	200–210 °C	3 MPa	16 MW
Vacuum vessel	100–105 °C	1.1 MPa	0.043 MW

Fig. In-vessel components image of Japan's DEMO

ITER MCNP

Water Radiolysis in Fusion Neutron Environments for ITER

(a)Illustration of the three buildings constituting the ITER complex.

(c)Biological dose rate Activated pipe chases and cryostat <u>uSy/hr</u>, at 106s after shutdown – example results.

(e)Total photon dose rate (µSy/h).

(b)Biological dose rate <u>uSy/hr</u>, neutrons during plasma operation – example results, level L2.

(d)Total photon dose rate (Sy/h), during plasma operation.

(f)Integral dose to silicon from 54 cask transfers (from three port cell locations), in units of Gy.

Fig. MCNP Calculation results for detailed radiation maps of the ITER complex have been produced during plasma operation and after shutdown to the required dose rate cut-off criteria

SUMMARY

Optimization of Water Coolant Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant, it was necessary to control the chemical water by added suitable chemical elements, to avoid corrosion problems and also to properly adjust the normal operation and shutdown the nuclear power plant, and this has already been implemented for decades and it is a proven technology (PWR, VVER, BWR, CANDU, etc.),. But in the case of fusion reactors, Still under research ,for example Japan's DEMO, it is clear in this research that Japan's DEMO use of water as a coolant is used in the same range of temperatures and pressures used In PWR.

THANK YOU For your Attention

