

On the water chemistry of fusion power plants

Compatibility Between Coolants and Materials for Fusion Facilities and Advanced Fission reactors 30 October - 03 November 2023

Ivo Moscato, G. Agnello, P. Chiovaro, A. Quartararo

On behalf of EUROfusion DEMO Central Team

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Main DEMO In-VV components

Several clients to feed

Vacuum Vesse 8 MW Breeding Blanket 1872 MW 1126-1163 MV PFCs coola 80 MW Limiters 114 MW SB coolan E-mult 34 MW 1597 MW 1.191 1902 MW argets cool 115 MW Divertor Pfusion 299 MW 2000 MW assette coo 184 MW Other ports for Auxiliarie P_{alpha} 403 MW auxiliaries coolant(s) 62 MW 62 MW P_{Core rad} 302 MW P_{alpha+aux} 453 MW P_{SOL} rad P_{aux} 50 MW 106 MV Total deposited otal now PSOL nowei 151 MW = 2355 MW

Current DEMO baseline foresees 16 tokamak sectors. Several In-Vessel components encompassed by the VV.

- Breeding Blanket: <u>80 segments</u> (48 outboard BB + 32 inboard BB)
- Divertor: <u>48 cassettes (</u>3 per tokamak sector)
- Limiters: 20 discrete limiters are currently considered.
- Vacuum Vessel: <u>16 sectors</u>
- **Other auxiliaries** (additional heating antennas, port plugs etc.)

Due to the different requirements of the clients, a single coolant circuit cannot be adopted. Several coolant systems to be developed (final number not defined yet).

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 2/13

How the DEMO Tokamak coolants system looks like?

Comparison with Nuclear Power Plants

Quantity	Breeding blanket PHTS	Shielding Components PHTS	High Heat Flux PHTS		
Nom. thermal-power [MW]	1900	230	240		
Primary water volume [m ³]	630	140	280		
Primary avg. temperature °C	312	195 (312) [*]	133		
Primary pressure [MPa]	15.5	3.5 (15.5)*	5.0		
Mass flow rate [kg/s]	9754	1718	9394		

4-loop PWR of 3 GW_{th} has about 350 m³

CANDU-6 has about 150 m³ heavy water inventory

*Values for high temperature option;

...even if you try hard to imagine it, it's hard for a tokamak to look like a pot...

...it doesn't look like the Calandria neither, **but** CANDU's layout is optimized since decades to have:

- Separate cooling circuits
- Feeders, headers
- main equipment on the two opposite side of the building.

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 3/13

Corrosion and its control in fusion environment *Main materials used in DEMO PHTSs*

Ex-vessel _____ components Low alloy steels → base materials for pressure vessels (cladded)
 Austenitic SS 304/316 (or variants) → piping and vessels cladding
 Nickel based alloy → steam generator tubes and vessels cladding

EU-DEMO circuits	Breeding blanket			Shieldi compon	ing ents		High heat flux components		igh heat flux Nuclear CA omponents Power Plants (2.		CANDU-6 (2.1 GW _{th})			W-3 L (2.7 G	oop W _{th})	
	Alloy	Area [*] [m²]	[%]	Alloy	Area [*] [m²]	[%]	Alloy	Area [*] [m²]	[%]		Alloy	Area [*] [m²]	[%]	Alloy	Area [*] [m²]	[%]
In-flux										In-flux						
- tubes/channels	Eurofer97	10288		Eurofer97	1572		CuCrZr	303	6	- Fuel	Zircaloy-4	3500	~ ~	Zircaloy	5530	24
- manifolds	Eurofer97	9445	54	Eurofer97	28	42	316L(N)-IG/ Eurofer97**	310	6	- Pressure tubes	Zr-Nb	800	24	-	-	-
- others	-	-		Eurofer97	1566		TBD	49 (ST)	1	- Others	403 SS	800	4	SS I-718	1185 514	5 2
Steam generator/ heat exchanger tubing	I-690/ I-800	11715	32	I-690/ I-800	2800	37	I-690/ I-800	1050	21	Steam generator/ heat exchanger tubing	I-800	10750	59	I-690/ I-800	13600	59
Primary coolant pipework	304 SS	5090	14	304 SS	1625	21	304 SS	3250	66	Primary coolant pipework	Carbon Steel [*]	2300	13	Stainless steels	2372	10
Total		36538			7591			4962		Total		18150			23201	
*All surfaces are approximate **Less likely option	values									[*] about 10% of feeder area is 2	-1/4 Cr-1 Mo st	eel				

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 4/13

Corrosion and its control in fusion environment

Several forms of corrosion–Chemical conditions for materials' protection

- General or uniform corrosion
- Galvanic corrosion
- De-alloying corrosion
- Velocity phenomena->erosion-corrosion, cavitation,

impingement, fretting and FAC

Crevice corrosion

Micro-localized corrosion

Macro-localized

corrosion

- Pitting corrosion
- Intergranular corrosion
- Corrosion fatigue
- Stress corrosion cracking

Two main objectives for the water chemistry control:

- protect the pressure boundary materials' integrity
- control of dose rates by minimising production and transport of corrosion products

EUROFER-97 \rightarrow Low O₂, Alkaline pH, low ionic impurities

Copper based alloy – Very limited O₂, neutral or alkaline pH, high water purity

Stainless steels/nickel alloys \rightarrow Limited O₂, alkaline pH, Low Cl⁻

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 5/13

Choice of the alkalizing agent

Is tritium a problem or an asset?

LiOH, KOH or NaOH are common alkalizing agent used to increase water pH

NaOH: ruled out due to higher risk of caustic SCC

• ²³Na(n, γ)²⁴Na $\rightarrow T_{1/2} \approx 15$ h; 1.37 + 2.7 MeV gammas

KOH: WWER experience, EPRI studies

• ³⁹ $K(n,\gamma)^{40}K \rightarrow T_{1/2} \approx 1.25 \cdot 10^9 y$; 1.46 MeV gamma

• ${}^{41}K(n,\gamma) {}^{42}K \rightarrow T_{1/2} \approx 12.3 h; 1.5 MeV gamma$

LiOH: Western PWRs experience • ${}^{6}Li(n,He)^{3}H$ and ${}^{7}Li(n,n\alpha)^{3}H \rightarrow T_{1/2} \approx 12.7 y;$

Main data in a nutshell:

- > <u>320 g/day of tritium being produced in breeding blanket.</u>
- With coatings reducing by a factor 100 the tritium permeation, migration into coolant can be as high as 450 mg/day → water detritiation system needed
- Production from <u>natural</u> LiOH in coolant would be max. 2 mg/day → negligible
- Tons of depleted ⁷Li available from ⁶Li enrichment, thus completely different supply chain respect to western PWRs \rightarrow Cost effective solution

LiOH is currently judged as the most elegant solution for fusion power plants I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 6/13

Corrosion and its control in fusion environment pH level for circuits equipped with Eurofer97

Corrosions in steels show a broad minimum in slightly alkaline conditions. Fe_3O_4 solubility mirrors the minimum.

Slightly alkaline condition, with pH_{25} between 10 to 12 would be beneficial to limit general corrosion

 \rightarrow In practice, pH₂₅ kept <u>below 11</u> to minimize the possibility of generating caustic environments

Corrosion of Eurofer97 higher than SS and Inconel. \rightarrow Magnetite anticipated to be dominant as Fe/Ni> 2

9.40 I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 7/13

pH₂₅

min solubility

11.81

11.69

11.44

11.07

10.94

10.69

10.30

9.65

Li ppm

63.78

47.14

25.75

10.39

7.68

4.20

1.69

0.37

0.20

pH_T

min solubility

11.81

10.97

9.71

8.69

8.32

7.94

7.43

6.95

6.79

T [°C]

25

50

100

150

180

200

250

300

310

Corrosion and its control in fusion environment

pH level for circuits equipped with Eurofer97.

Positive solubility gradients within in-flux areas are expected to minimize precipitation in the small channels and tubes \rightarrow less radioactivation, but also cleaner heat transfer surfaces (heat transfer, pressure drops.

- For breeding blanket circuit (T_{ave}≈310°C) is recommended the following operating band:
 9.5< pH₂₅ <10.5 (0.26 ppm< Li < 2.7 ppm)
- For shielding components (T_{ave}≈195°C), slight shift of the minimum pH₂₅ is suggested to minimize deposition onto in-flux surfaces avoiding → 10.1 < pH₂₅ <10.5 (1.1 ppm< Li < 2.7 ppm)
- Assessments on maximum lithium concentration to be made \rightarrow 2.7 ppm are currently assumed.

Simplistically:

$$\frac{dW_{in-flux}}{dt} = -R - k_{dis/pre} \begin{bmatrix} C_w(T) - C_b(T) \end{bmatrix} - k_{er} W_{in-flux} + k_{dep} C_{ins}$$
or positive solubility gradient, scale tends to dissolve from

hotter wall to cooler water and no precipitation occurs

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 8/13

Corrosion and its control in fusion environment *pH level for circuits equipped with CuCrZr*

- Reducing conditions are said to be needed to protect Cu from corrosion if reducing conditions are guaranteed, thermodynamics shows that only metallic copper will be stable
- Consistent with results from Montford and Rummery (1975), who found mainly Cu in metallic form in the crud on Monel 400 (31%wt Cu, 66%wt Ni) tubes operated between 250 and 295 °C and pH₂₅ 9.5-10.5.
- EPRI reports on BWRs and fossil plants suggest to maintain pH₂₅ around 9 in stations equipped with copper alloys however means for pH control for boilers could be of limited relevance for closed loops working in subcooling conditions such a EU-DEMO high heat flux components.

- Thermodynamic data is still under development as regard other oxides that can form.
- pH range is tentatively set to
 9.0 < pH₂₅ <10.0

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 9/13

Radiolysis of water

Can we keep sufficient reducing environment?

Simplistically, ionizing radiation decomposes water to form the species H^+ , OH^- , H, OH, H₂, O₂, H₂O₂, e⁻_{aq} and HO₂⁻. The stable products are H₂, H₂O₂ and O₂.

Reactions are reversible and <u>hydrogen addition</u> and the suppress the H_2O_2 and O_2 formation

- Recombination increases with temperature \rightarrow PWRs conditions are beneficial!
- Oxidizing conditions could be difficult to suppress in cold circuits
- \rightarrow in high heat flux components electrochemical corrosion potential could remain high.

Hydrogen is still recommended to decrease the oxidant formation.

Preliminary selected range 10-25 cc (STP)/kg

Takiguchi, H., et al., In-Pile Loop Experiment and Model Calculations for Radiolysis of PWR Primary Coolant, Water Chemistry of Nuclear Reactor Systems 8, 2001.

Time / s D.D. Macdonald, Corros. Mater. Degrad., (2022).

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 10/13

Activation of corrosion products

Preliminary approach to assess the activity levels in circuits (1/2)

- Large quantity of metals is released to the coolants due to the combination of huge wetted surfaces and relatively high corrosion rates of in-vessel material:
 - Eurofer97 is estimated to corrode at an average rate over 5 years up to 5.7 mg/dm²mo
 - CuCrZr corrosion rate averaged over 2 years up to 130 mg/dm²mo
- Purification half-life up to 60 min is recommended to effectively remove corrosion products and ensure high water purity → in case of breeding blanket circuit this implies a letdown flow around 1% of the loop mass flow rate (in PWRs generally 0.1%) → high temperature filtration needed?

Long-term CRUD specific activity [kBq g ⁻¹ [rud]		NPP			
	Breeding Blanket PHTS	Shielding components PHTS	High Heat Flux components PHTS	AP600	
⁵⁸ Co	5.08·10 ⁴	2.32·10 ⁴	4.25·10 ⁶	4.44·10 ⁵	
⁶⁰ Co	7.00·10 ⁴	1.39·10 ⁵	1.38·10 ⁶	2.22·10 ⁵	
⁵⁹ Fe	7.39·10 ⁴	3.70·10 ⁵	3.82·10 ⁶	1.85·10 ⁴	
⁵⁴ Mn	1.45·10 ⁶	7.26·10 ⁵	5.63·10 ⁴	5.18·10 ⁴	

It is expected that residual activities on surfaces will be comparable with fission power plants if not higher in some case

I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 11/13

Activation of corrosion products

Preliminary approach to assess the activity levels in circuits

- The current specs for max. cobalt content in the main in-vessel materials are comparable with materials used in out-of-flux regions:
 - For CuCrZr, this could be acceptable because ⁶⁰Co generated from Cu itself via ⁶³Cu(n,α)⁶⁰Co is generally dominant

 - Halving cobalt content in other ex-vessel material estimated to weight about 5%. → minor impact.
- For comparison, Zirconium alloys for fuel cladding have Co content as low as 20 ppm and release rates almost negligible.

Summary

- Corrosion issues and control must be carefully addressed since the early stage of the fusion power plant design
- Efforts should me made to reduce wetted surfaces and water inventories of the circuits, focusing chiefly on the in-vessel components
- LiOH is an alkalizing agent considered fully compatible with fusion power plant environment
- Tailored chemistry is possible for the different circuits and differentiation between copper-base circuits and Eurofer97 loops ease the control
- Radiolysis of water at low temperature must be carefully addressed
- Huge amount of corrosion product to be filtered to maintain water purity
- Further reduction of cobalt impurities in Eurofer97 should be pursued
- The presence of stainless steel in the in-vessel regions of HHFC increases ⁵⁸Co I. Moscato et al. | On the water chemistry of fusion power plants | IAEA | 30 Oct-3 Nov 2023| Page 13/13

Thank you for your attention