

Parametric study of ITER main PHTS using OSCAR-Fusion v1.4.a code

Dario Carloni on behalf of Radiation, Safety and Environment Group SQD/NS/RSE

30 October-03 November 2023, Vienna IAEA Technical Meeting on Compatibility Between Coolants and Materials for Fusion Facilities and Advanced Fission reactors

china eu india japan korea russia usa

iter

ITER primary cooling loops

Tokamak Cooling Water System (TCWS) removes up to 1 GW of power

The main loop, IBED, cools down the in-vessel components during plasma operation

~ 5000 kg/s 70 °C (dwell) – 140 °C (burn) 4 MPa

IBED provides also high temperature water to purge the tritium retained during plasma

> ~ 500 kg/s 240 °C 4.4 MPa

IBED = Integrated Blanket ELMs and Divertor

ACPs contribution to the Occupational Radiological Exposure

Biological shutdown dose rate (SDDR) in the areas hosting cooling equipment is dominated by the decay of the ACPs

decay photons / cm3 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 ~ 70% of the ORE at 10⁶ s of cooling time due to ACPs
Co60 is the driver

ACPs contributes also to the source term for accidental scenario (e.g. LOCA)

KEY for the neutrons budget definition in DT1

ACPs and ASN/IRSN

Validation of the ACPs source term required for ITER Safety demonstration:

1 – Safety Function "Limitation of exposure": Rad zoning in mode 1 + ORE/ALARA
2 – Safety Function "confinement": ACP is a contributor to some accidents (LOCA)

"We need to open the ACPs **black box** used in the past"

Validation of the ACPs source term requires also a staged approach due to lack of knowledge: ACP will be part of **"Acquisition Knowledge program"** recently introduced in the new licensing roadmap

Materials for IBED loop

CuCrZr IG

IBED Coolant Chemistry – status of art

	Mode	Plasma	Baking	
Parameter	Unit	IBED PHTS	IBED PHTS	Current consideration
Conductivity @25°C	µS/ cm	<= 0.2	*	
рН @25⁰С	-	7.0 - 9.0	*	
Sodium	ppb	<= 5	<= 5	No reason to increase/decrease during Baking
Chloride	ppb	<= 5	<= 5	No reason to increase/decrease during Baking
Hydrogen	ppb	<= 80		No injection expected during baking (no radiolysis)
Catalysed Hydrazine	ppb	<= 30	-	Injected for only initial filling
Ammonia	ppb	<= 1,000	_	No injection expected during baking, but could be injected to control pH
Oxygen	ppb	<= 10	<= 10	No reason to increase/decrease during Baking
ORP@25°C	mV	(-400) - (-100)	*	

OSCAR Fusion code

OSCAR code (CEA) Used for French PWR (Major advantage: The only code who is consolidated with measurements campaigns) ACPs assessments

> Commercial license for the use of the code at IO till 2025

New OSCAR Fusion Version (1.4a) used for SA2 and DT1 studies in 2023

OSCAR input main upgrades made in 2023

Lithium Injection to control the pH > 7 During all phases

Update Geometries and Thermal hydraulics based on post Final Design Review of TCWS

Material Activation rates recalculated for all the corrosion relevant elements in 4 different under flux regions

SA2 irradiation scenario 3E27 neutrons

A better integration of the **TCWS** operation: 30 days of baking before and after each plasma campaign (2 DD + 6 DT)

New OSCAR Fusion Version (1.4a)

OSCAR input based on TCWS PI&D and PFDs

New input data for both Geometry and Thermal hydraulics implemented in the model update Wet Surfaces corrected thanks to **check of the loop data with UNED**

Materials in OSCAR model

Material name	AISI304_12 mic AISI316_12 mic	AISI316_ 6 mic	AISI316_ 2 mic	AISI316_ 12 mic20	Cu alloy	Cu
Composition	Co 0.0005 Cr 0.175 Cu 0.003 Fe 0.648 Mn 0.018 Ni 0.123	Co 0.0005 Cr 0.175 Cu 0.003 Fe 0.648 Mn 0.018 Ni 0.123	Co 0.0005 Cr 0.175 Cu 0.003 Fe 0.648 Mn 0.018 Ni 0.123	Co 0.002 Cr 0.175 Cu 0.003 Fe 0.648 Mn 0.018 Ni 0.123	Co 0.0005 Cr 0.0075 Cu 0.99148 Fe 0.0002 Mn 2e-05 Ni 0.0003 Zr 0.0007	Co 0.0005 Cr 0.0001 Cu 0.9991 Fe 0.0001 Mn 0.0001 Ni 0.0001
Roughness	12 µm	6 µm	2 µm	12 µm	1.3 µm	6.3 µm
Regions	Out-of-flux and in-flux regions	DIV stainless steel parts	HXs	Isolation Valves	In-flux regions	IVCs Divertor swirl tubes

^[1] Zirconium concentration is not simulated in OSCAR runs due to its negligible impact in terms of both activity and contribution to the ORE

Early 2023 Results Comparison

WP-A-3: Validation of the OSCAR input and its results (Engineering support for TCWS ACPs assessment - 2nd Deliverable) (87D6BT v1.4) Corrosion laws comparison Moorea – Power Studsvik – Power Belus

Parametric study to justify the delta = > factor 10 for OoF activity depending on the corrosion laws

Cu alloy corrosion rates @ baking temperature To be validated against experimental results to reduce Uncertainties

2023 Reference Case – SA2 – new corrosion law for Cu-alloy

TABLE 2: Erosion corrosion and release rates of CuCrZr.

Temperature [°C]	Erosion corrosion rate [μm ·year ⁻¹]				Release rate $[mg \cdot cm^{-2} \cdot year^{-1}]$			
	Oxid	izing	Redi	ıcing	Oxid	izing	Redu	icing
Flow velocity [m/s]	10	15	10	15	10	15	10	15
110	25	27	1	1	22	24	2	2
150	37	43	/	/	33	39	/	/
250	1600*	3000*	8	24	1400*	2700*	15	45

* Calculated from data obtained for total exposure time of 170 h.

Structural Integrity of Cu-alloy components might be at risk during the real operation

Safety Review

Inventory Management

ACPs update

SA2 and DT1

Scenarios SA2 (+ PFPOs)

Mode	Duration [s]	Ouration [s] Comment					
1 day of D-T Plasma operation							
Burn	8000	500 MW plasma shot lasting 500 seconds					
		16 shots per day [41] [40]					
Dwell	78400	In	Including Night Shift				
	1 DT ses	sion					
Dwell	9.98						
Burn	1.02	STM in					
STM	3	S I WI IS SIMULATED AS OWEIL TIME					
1 FPO							
Baking	30						
Dwell	319.4	1 FPO sim	ulating 32 sessions, i.e. 16				
Burn	32.6	m	onths of operation				
STM	96						
Baking	30						
Total 4 EBO	448+60=	At the end of each FPO an 8 months					
IOTALIFEO	508	cold-shute	down phase, is considered				
TOTAL 6 FPO cycles [Days]							
Burn	Dwell	Baking	Shutdown				
196	1916+	360	1200+12				
(4700 h)	576 (STM)		(only for FPOs)				

3E27 neutrons 5550 days

DT1 (+ AFP)

Мо	ode	Duration [days] Comment		ent				
Circuit Initialization								
Burn			1[s]		"Zero Power" to initialize the calculation (no activation)			
			AFP	_				
Baking			30		(30 days minus 1s to initialize the calculation with the reference period)			
Dv	vell		640					
Cold-sł	nutdown		240					
			FPO1					
Baking			60 A longer baking op for the first FPO1 occurring betwee		longer baking opera or the first FPO1, sin occurring between <i>i</i>	ration is simulated since VV opening NAFP and FPO1		
Dwell		371						
Ba	king		30					
FPO campai gn	Duratio n, [y]	Plasma species	Neutron yie (x10 ²⁴)	eld	Duration of the DT pulse in (days)	Duration of the DT pulse in OSCAR (days)		
FPO-1	2	DD	0.0191		0.0014	0.0014		
FPO-2	2	DT	1.31585		0.08	0.1		
FPO-3	2	DT	4.3447		0.29	0.3		
FPO-4	2	DT	11.1617		0.73	0.72		
FPO-5	2	DT	17.7972		1.17	1.17		
					Total : 2.2714	Total : 2.29014		
~ 3E25 neutrons								

4347 days

SA2 vs DT1 Co-60 Activity

— SA2 Co60 Out-of-flux regions: deposit

→ DT1 | Co60 Out-of-flux regions : Total (TBq)

Co-60 Surface Activity

SA2 vs DT1

Co-60 Surface activity in the out of flux regions - Factor 100 lower for DT1

Dose rate

SA2 vs DT1

Dose rate ~ Factor 80 lower for DT1 after baking

On IDM

SA2

WP-A-3: Validation of the OSCAR input and its results (87D6BT) V1.6 under review

USE OF OSCAR-FUSION v.1.4 CODE FOR A PRELIMINARY ACPs ASSESSMENT

We need to get the best possible understanding of ACPs to optimize ITER design and operation

Paper for FEC2023 [9GS6FN]

Poster for FEC2023 [9PS98U] DT1

ACPs inventory for DT-1 scenario (9GLRFZ v1.1)

Attached:

DT1_ACPs_Inventory.ods For Generic Safety Analyses

DT1s_Surface Activity.ods For ORE studies 2023 Parametric Studies on coolant and material properties

(ITER_D_8FZ6DW v1.1)

Analyses Domains

Coolant Chemistry	Operation	Material properties		
рН	CVCS flow rate	Roughness		
[H2]	Baking	Co content		

H2 Concentration

pH Control & Baking operation

Limited impact of Li injection on the spreading of contamination for selected isotopes (gamma emitters)

pH variation impact on corrosion rates is not simulated by power law in OSCAR

Avoid water baking Clear benefit in terms of spreading of contamination

Action from RSE to discuss with SCOD/PBS to optimize Baking operation

CVCS flow rate \rightarrow keeping it constant

Pipe Roughness – Jungle Gym 12microns vs 2

Impact on Jungles surface activity

Lower activity due to the deposit erosion occurring in the 2 microns case

Potential impact on other surfaces/regions

Origin of Co content

Surface Activity Jungle-r [MBq/m2]

Co60 precipitation

Recommendations for ALARA

Implement roughness reduction for maintenance and inspection activities impacting ORE Study alternatives to baking or if not possible,

Study impact of the CVCS flow rate increase

Limit baking frequency and duration

ACPs Roadmap [9GYSM6 v1.0]

ACPs Programme - Objectives

Validation of OSCAR input data (corrosion laws + chemistry)

Consolidation of OSCAR results + uncertainties

Definition of the Safety Margins applicable at ITER ACPs source term

Proposal of DRMs (Safety Engineering) verified by OSCAR results in collaboration with CIO and concerned PBSs

ORE assessment update

validated Dose Reduction Measures and ACPs source term + safety margins

International synergy including fusion and fission experts (with REAL operational experience) to pragmatically support ITER safety demonstration on ACPs source term

ACPs Programme - Timeline

Thank you!

china eu india japan korea russia usa