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KF Overview ® FUSIONEERING

Design and develop critical path non-plasma-core systems

Support fusion developers and enable an accelerated path to commercialisation

Building on a foundation of advanced fusion plant engineering technology from Kyoto University
Bring Japanese industrial technology to the global fusion industry
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SCYLLA® Breeder Blanket ® FUSIONEERING

pbLi Reflector/Shielding
(design dependent) Outer Reactor
Vessel

Silicon Carbide Composites — Ceramic fibresina < wa

ceramic maitrix

* High temperature operation — increased efficiency

* Relatively low neutron absorption cross-section

* Relatively low neutron activation and shorter half-lives
* Relatively low tritium permeability /

Plasma SiCf/SiC Booster/ SiCf/SiC

SIC/SIC Development cramel 1 stuctural support  Chamnel2
* Different processing methods: CVI, PiP, CVD, NITE, etc.
* Different properties: density, crystallinity, hermeticity,

thermal conductivity, and chemical stability ) e
* Challenges remain for characterising, joining, etc. g

SCYLLA © Breeder Blanket Concept (Pearson, 2022)
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Coolant Options — High T, Breeding, Corrosion
* LiPb
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Plant Efficiency vs Temperature (Baus, 2023)



SIC,/SIC Coolant Compatibility — LiPb
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Conditions

* 400 -1200 °C, 100 — 5000 hours

e Static and flowing (up to ~0.5 ms1)
* Various types of SIC/SiC

Key Conclusions

* Below 1000 °C, corrosion is generally
low, with CVD-type SiC composites
seemingly the most stable

* At1100 and 1200 °C, Si conc. in LiPb
Increased, suggesting corrosion

* Impurities in LiPb greatly influence
the character of the corrosion layer:
Li,O, Al and Y (sintering), Ni, Cr and
Fe (alloys), C forming carbides

* Seemingly low impact of flow velocity

Reference Study S1C Composite Material Static/Flowing LiPb  Time  Temperature
Barbier (2002) CVI S1C: as-received and Static 3000 h g00 *C
scratched surfaces
Pint (2007) Monolithie CVD p-SiC Static 5000 h 800 °C
2000 h 1100 °C
1000 h 1200 °C
Zhu (2009) P1P SiC with CVD SiC Static 500 h 700 °C
coating
Zhao (2010) PiP S1C with and without Static 500 h 700 °C
CVD [-SiC coating (Fe, Cr and Ni
impurities)
Ling (2011) PiP SiC with and without Static 200 h 800 °C
CVD J-SiC coating 1000 h 800 °C
Park (2011) NITE SiC with fibre coated Flowing 1000 h 900 °C
with C (0.1-0.37 ms1)
Tost1 (2013) CVI siC Static 100 h 400 °C
Pint (2013) CVD SiC Static 1000 h 500°C
1000 h 600 °C
1000 h 700 °C
Park (2018) CVD SiC and CVI 8iC Flowing 1800 h 900 °C
(~0.1-0.5 ms1) 3000 h 700 °C
Static 1000 h 900 °C
Pint (2021) CVD SiC Flowing 1000h  600-700 °C
(~0.95 ems1)
Romedenne CVD SiC Flowing 1000 h  550-650°C
(2023) (~0.07 cms™)




SIC,/SIC Coolant Compatibility — FLiBe
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Reference Study SiC Composite Material Static/Flowing Time Temperature
Conditions FLiBe
Nishimura (2000) Monolithic Si1C Static 24,72 and 550°C
* 550-750°C, 24 — 1000 hours 240 h
. Cao (2016) CVT and CVD SiC Static(?) 1000 h 700 °C
« Static Pint (2020) Various CVD SiC: Static 500 h 750 °C
= - - CVD SiC, 1000 h 650 °C
* Various types of SIC{/SIC High-resistivity. 1000 h 750 °C
Low-resistivity,
- ) ) ) a-S1C,
* Due to difficulties in handllng Be, Graphite + pyrolytic C
data is sparse (more data Various CVI SiC-
available for FLiNaK) Hi-Nicalon Type 2 fibres.

Tyranno SA3 fibres

Key Conclusions
* Little difference in corrosion rates in the range 650 — 750 °C

* Generally, the CVD SiC composites seem to be more resistant to corrosion than CVI SiC
* Impurities in FLiBe appear to cause degradation of SiC (formation of Ni;,;Si,, due to Ni impurities)



Issues to be Resolved ® FUSIONEERING

 Long-term corrosion experiments in flowing coolant under neutron irradiation;

« Flowing experiments with a temperature gradient and including SiC composites and structural
alloys where dissimilar interactions may occur between SiC and Fe, Ni and Cr;

« Correlation between chemical degradation or corrosion and propagation of micro-cracks, and
the time-dependent slow crack growth failure of fusion-grade SiC composites;

« Cover gas solubility and the expected oxygen activity during service;
 The impact of irradiation on the behaviour of H isotopes in SiIC composites;
« The impact of adjusting the Li:Pb ratio on corrosion behaviour;

« The effect of SIC composite microstructure (e.g. grain boundary effects) on corrosion and
susceptibility to form localised attack.



UNITY-1 FaC|||ty DeVEIOpment ® FUSIONEERING

UNITY-1 (under construction)

« Blanket test section (1000 °C) T

e 300 L LiPb inventory . ,
e FLiBe and Li loops to be added later = T _-__:lggt extracth :
e 4T NbTi magnet Simulated power core |

« Two heat exchangers and power "Pumpltesting
conversion (first electricity generation ‘ | 4 ‘
from a blanket module) purposet

i testbed, |  Energy

(& L' | conversion

Fuel cycle demo ” iz

Y

Blanket
testing unit

Materials Testing

e Compatibility in flow conditions (up to 50 Lmint)

e Impact of changing Li:Pb ratio

e FLiBe and Li piping material tests



Other Facilities — LiPb and FLIBe ® FUSIONEERING

1) LiPb Loop (historic)

Up to 926 °C .
10 L LiPb .
~3 Lmin-1 .
Corrosion under flowing .
conditions

LiPb Loop, Kyoto University

2) FLiBe Loop (commissioning)

Up to 650 °C

7 L FLiBe

FLiBe refining system

Coolant purification, corrosion under flowing
conditions, tritium extraction (using D as proxy)

FLiBe Loop (left), FLiBe Purification Glovebox (right) 10



Other Facilities — LI
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3) Li Loop
(under construction)

Up to ~600 °C

3.7 kg Li

~10 Lmin-t

9Cr-1Mo ferritic steel, Ni-free steel (SS430)

SiC and Li are incompatible, but other materials offer promise for high-temperature
applications: V, W, Mo, Ta, No and their alloys
Could be suitable for heat exchangers and smaller components

® Superior resistance to corrosion (up to 1300°C)

Issues remain to be investigated:
® Scarcity of raw materials
®* Manufacturability
®* Reactivity with impurities

11



Conclusions ® FUSIONEERING

Understanding Corrosion in the SCYLLA® Breeder Blanket

® Existing literature provides a baseline for understanding corrosion of SiC/SiC composites in LiPb and FLiBe

® Further works include: long-term corrosion behaviour, impact of impurities, irradiation and temperature gradients, etc.

KF SiC{/SIC Development

® SIiC/SiC composites are still being optimised — existing corrosion data is a guide only

® Characterisation of SiC{/SiC composites requires further work, and joints may require special attention for corrosion

KF Facility Development
® UNITY-1 is being built in Kyoto, Japan: High temperature LiPb flow loop with 4T magnetic field

® Additional experimental loops available or planned: LiPb and FLiBe loops (existing), Li loop (planned)

Scope for Collaboration

®* KF is keen to work with others to share knowledge and experimental facilities 12
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Web: www.kyotofusioneering.co
Contact: info@kyotofusioneering.ca
Twitter: @kyotofusioneer

LinkedIn: linkedin.com/company/kyoto-fusioneering/
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