

Safeguards Aspects of Advanced Reactors

TM on Compatibility Between Coolants and Materials for Fusion and Advanced Fission Reactors

October 31, 2023 – Vienna

Jeremy Whitlock

Senior Technical Advisor (SBD), SG Concepts and Planning Department of Safeguards, IAEA J.Whitlock@iaea.org

Role of IAEA safeguards

Credible assurance that countries are honouring their international obligations (under the NPT) not to divert nuclear material from peaceful use to a nuclear weapon.

> In safeguards planning scenarios, **the State** is the prime 'actor'.

> Nuclear facilities support the State in meeting its international obligations.

Challenge of safeguarding advanced reactors

• All new nuclear facilities in a Non-Nuclear Weapon State (NNWS) under the NPT will need to be safeguarded when deployed

> regardless of the size, innovation, accessibility, owner/operator, or supplier of technology

- Many vendors are from Nuclear Weapons States (NWS)
 > lack of 'international safeguards culture' within domestic nuclear design community
- Advanced reactors may require advanced safeguards (which requires R&D)
 > new core/fuel designs, plant layouts, SF management, fuel cycle facilities
- Enhanced security and 'inherent' proliferation resistance **do not** necessarily mean simpler safeguards
 - 'safeguardability' is an important but often overlooked external component of PR (and customer requirement)

How can plant design improve safeguards?

Verification of Nuclear Material Accountancy

- To verify State's declaration of nuclear material **inventory and flow** (e.g. item counting, weighing, non-destructive assay)
- Can involve remote monitoring of unattended equipment

Containment and Surveillance

- To maintain continuity-of-knowledge (e.g. cameras, seals, measurements) between inspections
- Can involve remote monitoring of unattended equipment

Design Information Verification

• To verify State's **declared facility design** (construction, operation, modification or decommissioning)

SBD: a facility 'life cycle' concept

SBD: a State 'fuel cycle' concept

SBD: not a new concept

Rokkasho Reprocessing Facility, Japan:

 Unattended process monitoring and sampling systems, joint-use equipment

CANDU PHWR reactors:

 Unattended item-flow monitoring systems

SBD: a new priority

SMRs, advanced reactors:

Novel technology and deployment models: need for new safeguards approaches, measures and equipment

Back-end management:

Novel processes, large volumes: preparation needed for safeguards C/S measures and termination on waste

Safeguards challenges for SMRs

- Advanced fuels and fuel cycles: higher enrichment, pyroprocessing, ...
- Advanced reactor designs: molten salt, fast reactors, pebble bed, ...
- Longer operation cycles: continuity of knowledge between refuelling, high excess reactivity of core (target accommodation)
- New supply arrangements: factory sealed cores, transportable and floating power plants, transnational arrangements (need for design verification and sealing)
- New spent fuel management: storage configurations, waste forms
- Small footprint: access, design verification

Safeguards challenges for SMRs (cont'd)

- **Diverse operational roles:** district heating, desalination, hydrogen + electricity
- Remote, distributed locations: access issues, lack of "unannounced" visit deterrence, cost-benefit issues
- Multiple-module plants: continuity of knowledge, resource issues
- Sheer number of designs! (>80 in IAEA 2022 guide)
- Lack of safeguards awareness in design community (and difficulty in engaging directly with designers)

Both IAEA and State capabilities must be ready

Safeguards needs for SMRs

- Unattended monitoring systems (UMS) and remote data transmission (RDT)
- > **Digital connectivity** coverage in remote areas (reliable, high bandwidth, secure)
- Safeguards seals on factory-sealed, transportable cores
- > **Design verification**, particularly under transnational supply arrangements
- New safeguards approaches, including (potentially) joint-use instrumentation (e.g., thermal power monitor for microreactors, process monitoring)
- State-level issues: e.g., new or expanded nuclear capability
- > Training for safeguards authority in emerging nuclear energy States
- > All of these **need** <u>time</u> for development: SBD provides this

Benefits of safeguards by design (SBD)

Reduce operator/IAEA burden by optimizing (reducing) inspections

- Enhance possibility to use advanced technology like unattended monitoring systems (UMS), and remote data transmission (RDT)
- ✓ Reduce need for retrofitting
- Facilitate joint-use equipment and shared process information
- Increase flexibility for future safeguards equipment installation

Benefits of safeguards by design (SBD) (cont'd)

✓ Avoid conflicts and leverage synergies with safety and security ('3S')

✓ **Reduce risk** to scope, schedule, budget, and licensing

 Better understanding by all stakeholders of safeguards obligations (particularly important for embarking countries)

Possible marketing advantages for vendors?

SBD benefits all parties involved, not just the IAEA

New builds: informing the IAEA

Guide on Provision of Information to the IAEA, IAEA Services Series 33, 2016

SBD example: molten-salt SMR

1 A designer of a molten-salt SMR, <u>as recommended in the</u> <u>'pre-licensing review' process of the State nuclear regulator</u>, engages in early SBD discussions with the State safeguards authority (SRA) and the IAEA.

2 Safeguards measures are negotiated, involving IAEA unattended measurement systems (UMS), remote data transmission (RDT), and the secure sharing of operational data.

3 The designer works with the IAEA, SRA, and operator to incorporate these requirements, including development of customized equipment and analysis methods.

4 A prototype of the molten salt SMR is built, and an optimized, effective safeguards approach is implemented.

SBD: challenges to implementation

- IAEA lacks a direct channel for initiating communication with designers, particularly at the earliest stages of design when greatest SBD potential exists.
- Lack of an 'engineering requirements' document for safeguards only 'best practices'.
- > Designers lack a **uniform understanding** of safeguards requirements.
 - Many nuclear designers are new to the industry, often relatively small with limited scope of capabilities
 - Many nuclear design companies are located in Nuclear-Weapon States, where IAEA safeguards are typically of concern when exports are anticipated (lack of "safeguards culture")
- Safety and economics are priority design drivers; safeguards not seen as a design driver at all – of relevance toward end of build process
- Inconsistent licensing practice in addressing safeguards requirements

> Proprietary / commercial concerns with early sharing of detailed design information

SBD: IAEA activities

SMR Member State support program tasks

- > Russia, South Korea, US, Canada, Finland, France, China
- Technologies include floating reactor, integral PWR, molten-salt reactor (MSR), pebble-bed reactor, microreactor (district heating)
- Program is extendable to other Member States
- ➤ Goal is to work with Member States to:
 - raise awareness of safeguards with technology designers
 - evaluate design aspects (changes?) that could impact safeguards
 - investigate safeguards implementation strategies

Internal IAEA collaborations:

- > IAEA SMR Platform (single point of contact for Member States)
- Dept. of SG SBD Working Group (Safeguards, Nuclear Energy, Nuclear Safety and Security)
- Other internal collaborations with NE and NS initiatives

External engagements:

> Raising awareness with stakeholders through third-party interactions and collaborations

IAEA general safeguards training

IAEA Open Learning Management System:

Nuclear Technology & Applications

→ Nuclear Energy
→ Knowledge Management
→ more...

Cooperation Partners

Nuclear Safety & Security

IAEA safeguards-by-design guidance

Safeguards Implementation Practices Guide on Provision of Information to the IAEA

Vienna, June 2016

IAEA Services Series 33

Thank you for your attention!

J.Whitlock@iaea.org

Dr. Jeremy Whitlock is a Senior Technical Advisor in the Department of Safeguards at the IAEA, with three decades' experience as a scientist and manager in the Canadian and international nuclear community. Prior to moving to the IAEA in 2017 he spent 22 years at Canadian Nuclear Laboratories as a reactor physicist and manager of non-proliferation R&D.

Dr. Whitlock received a B.Sc. in Physics from the University of Waterloo (1988), and an M.Eng. and PhD in Engineering Physics (reactor physics) from McMaster University (1995).

Dr. Whitlock is a Past President, Fellow, and former Communications Director of the Canadian Nuclear Society. Since 1997 he has maintained *The Canadian Nuclear FAQ* (<u>www.nuclearfaq.ca</u>), a personal website of frequently-asked questions (FAQs) on Canadian nuclear technology.

Dr. Whitlock lives in Vienna, Austria, and feels that canoes are the closest humans have come to inventing a perfect machine.

J.Whitlock@iaea.org