

Impact of isomeric yield ratios on reactor antineutrino spectra

A. Mattera, A.A. Sonzogni, E.A. McCutchan, R.J. Lorek, C. Sears, C. Billings National Nuclear Data Center, Brookhaven National Laboratory

Fission Yields in anti-v spectra summation calculations

 $\mathbf{\xi}$ The contribution from the β-decay of each fission product is weighed with its fission yield

FY evaluations -- uncertainties

FY evaluations -- uncertainties

FY evaluations -- uncertainties

FY evaluations -- what's in there?

FY evaluations -- what's in there?

when no measurement is available, independent yields are obtained from Wahl charge-distribution model (errors ~ 32-100%, depending on the yield).

Evaluated yields are obtained normalizing the model prediction to the closest available data points \rightarrow a large error was assumed in these cases.

Isomeric Yield Ratios

- Fission Yields are a key component of the Summation Method
- Isomeric Yield Ratios represent another key component that is difficult to accurately predict, and must be based on experimental data.

$$IYR = \frac{Y_{isom}}{(Y_{isom} + Y_{gs})}$$

Isomers and antineutrino spectra

Isomers and antineutrino spectra

IYRs in current FY evaluation

National Laboratory

It predicts IYR with minimal information on the fission products:

Isomeric ratio is split based on the J_g / J_m assuming a statistical P(J):

 $P(J) = P_0(2J + 1) \exp\left[-(J + \frac{1}{2})^2/\langle J^2 \rangle\right]$

1-parameter (J_{rms}) that fixes the P(J) distribution for all FFs

Experimental Recommended IYRs

Chesk for spoores			Available online at www.sciencedirect.com ScienceDirect						Nuclear Data Sheets			
ER		Nuclear Data Sheets 173 (2021) 118-143						www.elsevier.com/locate/nds				
	Comp	oilation	and Evalu	ation of Is	omer	ic Fi	ission Yiel	ld Rati	05			
. Sea	ars, ^{1,2} A. I	Mattera, ¹ ¹ Nation ² S	^{1,*} E.A. McCu nal Nuclear Dat Bldg. 817, P.C mith College, 1	tchan, ¹ A.A. ta Center, Bro b. Box 5000, U b Elm Street,	Sonzog okhaven Ipton, 1 Northas	ni, ¹ E Natio NY 11 mpton,	D.A. Brown, ¹ onal Laborator 973-5000 MA 01063	and D. F y,	Potemkin ^{1, 3, 4}			
Id	Tgt Name	Proj Name	${f E_{ m inc}} ({ m MeV})$	Fission F Name	rodu J _g	$_{\rm J_m}^{\rm ct}$	IYR (org)	Form	IYR (M/T)	EXFOR	Ref.	Notes
0	U-235	n	2.5×10^{-8}	32-Ge-79	1/2	7/2	0.8(10)	M/T	$[0 \cdots 1]$	22161	[31]	0
1	U-233	n	2.5×10^{-8}	32-Ge-81	9/2	1/2	0.24(7)	M/T	0.24(7)	22798	[34]	
	U-235	n	2.5×10^{-8}	32-Ge-81	9/2	1/2	0.20(6)	M/T	0.20(6)	00161	[91]	
2				02 00 01			0.30(0)	IVI/ I	0.30(0)	22101	31	
$\frac{2}{3}$	U-238	n	1	32-Ge-81	9/2	1/2	0.30(0) 0.46(8)	M/T	0.30(0) 0.46(8)	22334	[31]	
$2 \\ 3 \\ 4$	U-238 Th-232	n p	1 25	32-Ge-81 32-Ge-81	$\frac{9}{2}$ $\frac{9}{2}$	$\frac{1/2}{1/2}$	0.30(0) 0.46(8) 0.920(20)	M/T M/T	0.30(0) 0.46(8) 0.920(20)	22334 O2429	[31] [32] [27]	
$2 \\ 3 \\ 4 \\ 5$	U-238 Th-232 U-238	n p p	1 25 25	32-Ge-81 32-Ge-81 32-Ge-81	$9/2 \\ 9/2 \\ 9/2 \\ 9/2$	$1/2 \\ 1/2 \\ 1/2 \\ 1/2$	$\begin{array}{c} 0.30(0) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \end{array}$	M/T M/T M/T	$\begin{array}{c} 0.30(0) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \end{array}$	22334 O2429 O2429	[31] [32] [27] [27]	
$2 \\ 3 \\ 4 \\ 5 \\ 6$	U-238 Th-232 U-238 U-238	n p p p	1 25 25 25	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81	9/2 9/2 9/2 9/2 9/2	$1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2$	$\begin{array}{c} 0.30(0) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \\ 0.975(7) \end{array}$	M/T M/T M/T M/T	$\begin{array}{c} 0.30(0) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \\ 0.975(7) \end{array}$	22334 O2429 O2429 O2395	[31] [32] [27] [27] [28]	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7$	U-238 Th-232 U-238 U-238 U-233	n p p n	$ \begin{array}{r} 1 \\ 25 \\ 25 \\ 25 \\ 2.5 \times 10^{-8} \end{array} $	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82	9/2 9/2 9/2 9/2 9/2 2	1/2 1/2 1/2 1/2 1/2 5	$\begin{array}{c} 0.30(0) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \\ 0.975(7) \\ 0.13(8) \end{array}$	M/T M/T M/T M/T M/T	$\begin{array}{c} 0.30(0) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \\ 0.975(7) \\ 0.13(8) \end{array}$	22334 O2429 O2429 O2395 22798	[31] [32] [27] [27] [28] [34]	D
2 3 4 5 6 7 8	U-238 Th-232 U-238 U-238 U-233 U-235	n p p n n	$\begin{array}{c} 1 \\ 25 \\ 25 \\ 25 \\ 2.5 \times 10^{-8} \\ 2.5 \times 10^{-8} \end{array}$	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82 33-As-82	9/2 9/2 9/2 9/2 9/2 2 2	$1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 5 \\ 5$	$\begin{array}{c} 0.30(6)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\end{array}$	M/T M/T M/T M/T M/T M/T	$\begin{array}{c} 0.30(6) \\ 0.46(8) \\ 0.920(20) \\ 0.970(10) \\ 0.975(7) \\ 0.13(8) \\ 0.17(7) \end{array}$	22334 22334 O2429 O2429 O2395 22798 22161	[31] [32] [27] [27] [28] [34] [31]	D D
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	U-238 Th-232 U-238 U-238 U-233 U-235 U-235	n p p n n n	$\begin{array}{c} 1 \\ 25 \\ 25 \\ 25 \\ 2.5 \times 10^{-8} \\ 2.5 \times 10^{-8} \\ 1 \end{array}$	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82 33-As-82 33-As-82	9/2 9/2 9/2 9/2 2 2 2 2	1/2 1/2 1/2 1/2 5 5 5	$\begin{array}{c} 0.30(0)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4) \end{array}$	M/T M/T M/T M/T M/T M/T M/T	$\begin{array}{c} 0.30(6)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4) \end{array}$	22334 22334 O2429 O2429 O2395 22798 22161 22334	[31] [32] [27] [27] [28] [34] [31] [32]	D D D
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	U-238 Th-232 U-238 U-238 U-233 U-235 U-238 U-238	n p p n n n p	$\begin{array}{c} 1 \\ 1 \\ 25 \\ 25 \\ 25 \\ 2.5 \times 10^{-8} \\ 2.5 \times 10^{-8} \\ 1 \\ 24 \end{array}$	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82 33-As-82 33-As-82 33-As-82	9/2 9/2 9/2 9/2 2 2 2 2 2 2 2	1/2 1/2 1/2 1/2 5 5 5 5	$\begin{array}{c} 0.30(0)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.270(30) \end{array}$	M/T M/T M/T M/T M/T M/T M/T M/T	$\begin{array}{c} 0.30(6)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.213(19) \end{array}$	22334 22334 O2429 O2429 O2395 22798 22161 22334 E1855	[31] [32] [27] [27] [28] [34] [31] [32] [30]	D D D
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11$	U-238 Th-232 U-238 U-238 U-233 U-235 U-238 U-238 U-235	n p p n n n p n	$\begin{array}{c} 1 \\ 25 \\ 25 \\ 25 \\ 2.5 \times 10^{-8} \\ 1 \\ 24 \\ 2.5 \times 10^{-8} \end{array}$	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82 33-As-82 33-As-82 33-As-82 33-As-82 33-As-82	9/2 9/2 9/2 9/2 2 2 2 2 2 9/2	1/2 1/2 1/2 1/2 5 5 5 5 1/2	$\begin{array}{c} 0.30(0)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.270(30)\\ 0.11(7) \end{array}$	M/T M/T M/T M/T M/T M/T M/T M/G M/T	$\begin{array}{c} 0.30(6)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.213(19)\\ 0.11(7)\end{array}$	22101 22334 O2429 O2395 22798 22161 22334 E1855 22161	[31] [32] [27] [27] [28] [34] [31] [30] [31]	D D D
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	U-238 Th-232 U-238 U-238 U-233 U-235 U-238 U-238 U-235 U-238	n p p n n n p n p	$\begin{array}{c} 1 \\ 25 \\ 25 \\ 25 \\ 2.5 \times 10^{-8} \\ 2.5 \times 10^{-8} \\ 1 \\ 24 \\ 2.5 \times 10^{-8} \\ 24 \end{array}$	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82 33-As-82 33-As-82 33-As-82 33-As-82 33-As-82 34-Se-83 34-Se-83	9/2 9/2 9/2 9/2 2 2 2 2 2 2 9/2 9/2 9/2	1/2 1/2 1/2 1/2 5 5 5 1/2 1/2 1/2	$\begin{array}{c} 0.30(0)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.270(30)\\ 0.11(7)\\ 8(4) \end{array}$	M/T M/T M/T M/T M/T M/T M/T M/G M/T G/M	$\begin{array}{c} 0.30(6)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.213(19)\\ 0.11(7)\\ 0.11(6) \end{array}$	22101 22334 O2429 O2429 O2395 22798 22161 22334 E1855 22161 E1855	[31] [32] [27] [27] [28] [34] [31] [32] [30] [31] [30]	D D D
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \end{array} $	U-238 Th-232 U-238 U-238 U-233 U-235 U-238 U-238 U-238 U-235 U-238 Th-232	n p p n n p n p γ	$\begin{array}{c} 1\\ 1\\ 25\\ 25\\ 25\\ 2.5\times 10^{-8}\\ 1\\ 2.5\times 10^{-8}\\ 1\\ 24\\ 2.5\times 10^{-8}\\ 24\\ 8.5\end{array}$	32-Ge-81 32-Ge-81 32-Ge-81 32-Ge-81 33-As-82 33-As-82 33-As-82 33-As-82 33-As-82 34-Se-83 34-Se-83 35-Br-84	9/2 9/2 9/2 2 2 2 2 2 2 9/2 9/2 9/2 2	1/2 1/2 1/2 1/2 5 5 5 1/2 1/2 1/2 6	$\begin{array}{c} 0.30(0)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.270(30)\\ 0.11(7)\\ 8(4)\\ 0.28(4) \end{array}$	M/T M/T M/T M/T M/T M/T M/T M/G M/T G/M M/G	$\begin{array}{c} 0.30(6)\\ 0.46(8)\\ 0.920(20)\\ 0.970(10)\\ 0.975(7)\\ 0.13(8)\\ 0.17(7)\\ 0.08(4)\\ 0.213(19)\\ 0.11(7)\\ 0.11(6)\\ 0.219(24) \end{array}$	22101 22334 O2429 O2429 O2395 22798 22161 22334 E1855 22161 E1855 G4028	[31] [32] [27] [27] [28] [34] [31] [30] [31] [30] [41]	D D D

TABLE II: Recommended IYR values for all low-energy thermal to 2 MeV) n-induced fission reactions on any issionable target. The recommended yield ratios are expressed in the M/T form. The number of data points in orackets represents the number of values excluded from he average because considered statistical outliers.

Fission Product	$egin{array}{c} { m Recomm.} \\ { m IYR} \\ { m (M/T)} \end{array}$	Nr. of data points
32-Ge-81	0.32(4)	3
34-Se-83	0.11(7)	1
37-Rb-90	0.526(30)	3(1)
41-Nb-95	0.248(29)	1
39-Y-97	$0.695(14)^{\dagger}$	1
39-Y-98	0.139(6)	2
41-Nb-99	0.83(17)	1(1)
45-Rh-102	0.44(14)	1
47-Ag-120	0.86(4)	2(1)
49-In-120	0.21(20)	1
19-In-120 M2	0.27(25)	1
48-Cd-121	0.89(11)	1
49-In-122	0.24(10)	1
9-In-122 M2	0.48(20)	1
48-Cd-123	0.65(6)	2
49-In-123	0.07(7)	1
48-Cd-125	0.85(5)	2
49-In-126	0.30(5)	3
49-In-127	0.185(31)	3
49-In-128	0.30(7)	1
51-Sb-128	$0.463(16)^{\dagger}$	14
49-In-129	0.42(6)	2
50-Sn-129	0.47(4)	3
49-In-130	0.25(5)	1
9-In-130 M2	0.41(7)	1
50-Sn-130	0.089(7)	4
51-Sb-130	$0.499(17)^{\dagger}$	18

(see text for details).

J_{rms} is not constant - M&E model is too simplistic

Evaluated IYRs

- of the ~150 isomeric yields that are included in the ND libraries, 42 have exp. data at low energy.
- In about half the cases where data is available, the libraries contain a value that doesn't agree with the measurements

Sears, C.J., et al. "Compilation and Evaluation of Isomeric Fission Yield Ratios." Nuclear Data Sheets 173 (2021): 118-143.

Impact of experimental values on anti-v spectra

- Spectrum shown as a ratio of the benchmark (JEFF-3.3 yields and IYRs)
- Virtually no difference below 5 MeV
- Overall increase elsewhere:

up to + 5% at 6 MeV up to +60% at 8 MeV

Some isomers are more equal than others...

$$IYR_{th} = 65\% \rightarrow IYR_{exp} = 50\%$$

$$CFY \approx 5\%$$
B
National Laboratory

В

$$\begin{array}{c} \text{IYR}_{\text{th}} = 81\% \rightarrow \text{IYR}_{\text{exp}} = 14 \ \% \\ \text{CFY} \approx 3 \ \% \end{array}$$

A broader sensitivity study

- Analysis of all fission products with a known isomer included in ENDF (many without published IYR data)
- Varied the value within physical boundaries
- Identified a fission products whose IYR affects the antineutrino spectra (e.g., Sb-134, Nb-100, La-146, Rb-90)

Summary and Outlook

- New evaluated isomeric ratios result in an increased antineutrino flux compared to the current FY libraries up to 60% for specific energies and fissile targets.
- Experimental data on IYRs exist only for a fraction of the fission products
- A sensitivity study shows that a number of other isomers could considerably affect the antineutrino spectrum, especially at high energies

Impact of isomeric yield ratios on reactor antineutrino spectra

A. Mattera, A.A. Sonzogni, E.A. McCutchan, R.J. Lorek, C. Sears, C. Billings

Evaluation of Isomeric Yield Ratios

There are ~200 fission products with a known long-lived isomer

 $IYR = \frac{Y_{isom}}{(Y_{isom} + Y_{gs})}$

The Madland & England model, loosely based on data from 40 yrs ago, is **used in all evaluated data libraries** as the basis to split Independent FYs between the GS and the IS based on the levels J_{rms}

Outline

- The "bump" in antineutrino spectra
- Fission yields and isomers in antineutrino summation calculations
- Impact of newly evaluated recommended isomeric yields
- A broader sensitivity study
- Outlook

Reactor antineutrino spectra and "the bump"

- km-baseline experiments measured the antineutrinos from β⁻-decay of fission products
- 5% deficit of the total number of antineutrinos (RAA)
- Excess of antineutrinos between
 5-6 MeV → "The Bump"

