Combining Reactor Fission Gas Data with Antineutrino Data

Anna Hayes LANL

Abstract

In previous work [1], we have shown that the average thermal neutron flux that reactor fuel has been exposed to can be determined from a measure of the ¹³⁷Cs/¹³⁵Cs ratio. However, this is only possible if the number of reactor shutdowns is know. Here we simply point out that, since antineutrino measurements can determine [2,3] the number of reactor shutdown and the total irradiation time, coupling fission gas measurements with antineutrino measurements would allow one to extract the ²⁴⁰Pu/²³⁹Pu ratio in reactor fuel.

- 1. A.C. Hayes and G. Jungman, Nucl. Insts. and Meth. A 690, 68 (2012).
- 2. N. Bowden, et al., Nucl. Inst. Meth. A, 572 (2007) 985-998
- 3. Andriamirado *et al.,* PRD103, 03201 (2021).

Goal: To determine the grade of Pu of reactor spent fuel from fission gas and antineutrino measurements

Assumptions:

- The original unirradiated fuel is some form of uranium ²³⁸U + ²³⁵U, but of unknown enrichment.
- 2. During the entire burn of the fuel antineutrino monitoring was sufficiently accurate to determine when the reactor was on or off.
- **3.** Fission gases produced in the the fuel during the burn can be measured.

The grade of the plutonium (²⁴⁰Pu/²³⁹Pu) in any uranium fuel depends on the total neutron fluence (n/cm²) of the irradiation

The enrichment of the fuel does not effect the Pu grade - only the fluence (and flux if very high) matter

In these simulations we artificially set the half-life of ²³⁹Np to 1 hour (instead of 2.3 days) to suppresses the dependence on flux.

To determine the total fluence we divide the problem into one of determining the flux and irradiation time separately

Determining the flux

The competition between: ¹³⁵Xe \rightarrow ¹³⁵Cs and ¹³⁵Xe(n, γ) ¹³⁶Xe causes the ¹³⁶Xe and ¹³⁵Cs to be sensitive functions of the thermal neutron flux.

¹³⁷Cs/¹³⁵Cs scales linearly with the flux, but reactor shutdowns affect the ratio significantly at high flux

Reactor neutron flux variations are a classic way to spoof many antineutrino schemes, but ¹³⁵Cs and ¹³⁶Xe always measure the the average thermal neutron flux, which is what determines the Pu grade.

¹³⁶Xe/¹³⁴Xe also a flux diagnostic, but less sensitive than ¹³⁵Cs Analytic expression can be derived for the Cs and Xe flux relations and their dependence of shutdowns

$$N_{135Cs}/N_{137Cs} = \frac{\overline{f}_{135I}}{\overline{f}_{137Cs}} \left[\frac{\lambda_{135Xe}}{\lambda_{135Xe} + \phi_T \sigma_a} + \frac{\phi_T \sigma_a}{\lambda_{135Xe} + \phi_T \sigma_a} \right] \times \left(\frac{P}{\lambda_{135I} T_{irrad}^{total}} \right) \left(1 + \frac{\lambda_{135I}}{\lambda_{135Xe} + \phi_T \sigma_a} \right) \left[\frac{1}{\lambda_{135Xe} + \phi_T \sigma_a} \right].$$

Comes from the fact that you can't restart a reactor until all the ¹³⁵Xe decays to ¹³⁵Cs Dependence on shutdowns

P=number of shutdowns

Need a second diagnostic for T_{irrid} and P (# of shutdowns) - This is exactly what Antineutrinos are good at!

SONGS detector at San Onofre Reactor, N. Bowden, *et al.*, Nucl. Inst. Meth. A, 572 (2007) 985-998

PROSPECT at 85 MW HFIR, Andriamirado *et al.*, PRD103, 032001 (2021).

Thus, by combining reactor fission gas measurements with antineutrino measurements the grade of Pu in the spent fuel can be determined

Antineutrino measurements of T_{irr} and P break any degeneracy in T_{ir}r/P from Cs measurements alone.

Antineutrino measurements also eliminate the uncertainty in the Pu grade that arises if there is a very high flux $\phi^{\sim} 10^{14} \text{ n/cm}^2/\text{sec}$

Uncertainties arising from nuclear data

Carried out benchmark reactor simulations using Monteburns with Origin 2.1 and CINDER90

Operating History for H. B. Robinson Unit 2 PWR

Cycle number	Interval time, days	Downtime following interval (days)	Average Power (MW/MTU)	Burnup (GWd/MTU)	Average soluble boron, ppm (wt)
1	243.5	40	32.23	7.85	652.5
2	243.5	64	30.10	15.18	247.5
3	156.0	39	28.35	19.60	652.5
4	156.0	3631	26.99	23.81	247.5

Comparisons for central rod positions

Isotope	Measured	Monteburns	Monteburns	% Relative
	(g/gUO2)	with	with	Error
		ORIGEN2.2	CINDER90	
U235	7.21E-03	7.31E-03	7.33E-03	1.7
U236	2.74E-03	2.64E-03	2.59E-03	-5.40
U238	0.847	8.41E-01	8.41E-01	-0.70
Pu238	6.95E-05	6.55E-05	6.71E-05	-3.42
Pu239	4.02E-03	3.92E-03	4.04E-03	0.59
Pu240	1.67E-03	1.67E-03	1.70E-03	1.94
Pu241	5.04E-04	5.30E-04	5.34E-04	5.90
Np237	2.60E-04	2.36E-04	2.45E-04	-5.91
	(Ci/gUO2)			
Tc99	8.09E-06	8.76E-06	7.21E-06	-10.86
Cs137	5.39E-02	5.27E-02	4.95E-02	-8.07

- ²³⁸U, 235U ²³⁹Pu comparisons reasonably good
- Minor actinides off by up to 6%
- Only have comparison to long-live fission products and ¹³⁷Cs and ⁹⁹Tc off by ~ 8-10%.

One rod was measured in detail at LANL at 112 inches above the bottom of the fuel, providing more stringent tests of simulation predictions of fission products.

isotope ratio	% difference	Isotope ratio	% difference	Atoms per	% diff
²³⁵ U/U	-0.5	²³⁴ U/U	-7.8	gm of UO ₂	
²³⁸ U/U	+0.01	²³⁶ U/U	-0.1		
²³⁹ Pu/Pu	-0.5	²⁴⁰ Pu/Pu	+5.0	⁹⁰ Sr	-13.2
¹⁴⁸ Nd/ ²³⁸ U	+0.3	²⁴¹ Pu/Pu	-7.1	¹²⁵ Sb	+12.6
		²⁴² Pu/Pu	6.2	¹³⁴ Cs	-9.0
		²⁴¹ Am/Am	-15	¹³⁷ Cs	-2.9
		²⁴² Am/Am	7.5	¹⁴⁴ Ce	-1.9
		²⁴² Cm/Cm	0.4	¹⁵⁴ Eu	-68
		²⁴³⁺²⁴⁴ Cm/Cm	+1.6	¹⁵⁵ Eu	+43

Major actinides are well reproduced Minor actinides are off by up to 10% Most fission products are off up to 10% Eu fission products are poorly reproduced

Summary

- The ²⁴⁰Pu/²³⁹Pu ratio depends on the total neutron fluence, and can be determined with a measure of the flux, the irradiation time, and the number of reactor shutdowns.
- The ¹³⁷Cs/¹³⁵Cs ratio is a sensitive measure of the the reactor thermal neutron flux, but requires knowledge of the number of reactor shutdowns.
- Antineutrino monitoring determines irradiation times and the number of reactor shutdowns.
 Coupling fission gas and antineutrino measurements could result in a powerful diagnostic.
- Benchmark simulations suggest that the major actinides can be reproduced accurately.
- However, fission product yields can be off by more than 10%, . There is a need for more accurate fission product yields, beyond those important for antineutrino spectra alone.