

Updates on the Modular Total Absorption Spectrometer

B.C. Rasco – ORNL Physics Division January 18, 2023 International Atomic Eenergy Agency - Wien

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

MTAS – Modular Total Absorption Spectrometer

MTAS and auxilliary detectors use UTK/ORNL DAQ

M. Karny, *et al.*, NIM A, 836, 83-90 (2016) B.C. Rasco, *et al.*, NIM A, 788, 137-145 (2015) B.C. Rasco, *et al.*, Phys. Rev. Lett. **117**, 092501 (2016)
A. Fijałkowska, *et al.*, PRL **119**, 052503 (2017)
B.C. Rasco, et al., PRC (2017)
P. Shuai, et al., PRC (2022)
B.C. Rasco, et al., PRC (2022)
M. Wolińska-Cichocka submitted to PRC (2023)

2

Modular Total Absorption Spectrometer Efficiency

Peak Efficiency is All γ-Ray Energy Detected

Total Efficiency is Any γ-Ray Energy Detected

3 COAK RIDGE

Why Total Absorption Spectroscopy Needed?

N-RICH PARENT (Z,N)

J.C. Hardy, et al., PLB 71, (1977)

Pandemonium Effect

Using low efficiency detectors can bias β-feeding patterns

This problem is made worse if there is a high density of states that decay via multiple γ-rays to the ground state

For β decays, low efficiency measurements can lead to an overestimation of lepton (β ,v) energy and an underestimation of γ -ray energy per β decay

Why Total Absorption Spectroscopy Needed?

Ground-State to Ground-State Feeding

Large ground-state to ground-state feeding leads to large uncertainties on absolute γ-ray intensities. This is not always reported.

⁸²As: 25(25)% GS-GS (<50%?)

⁸⁶Se: < 20% GS-GS
 ¹⁰⁴Mo lowest feeding: 86(21)% or 77(19)%
 ¹⁰⁶Mo: < 18% GS-GS
 ¹³⁸I: 26(5)% GS-GS (Deduced by Evaluator)
 ¹⁴⁴Cs: No Experimental GS-GS Data

Plus many more ground-state to ground-state feedings with large uncertainties.

CAK RIDGE

⁸⁸Kr results largely consistent with current ENSDF.
⁸⁸Kr difficult to isolate, but both contaminants, ⁸⁸Rb and
⁸⁷Kr, were easily and cleanly isolated independently and can be scaled using the Bateman Equation.

⁸⁸Rb results largely consistent with current ENSDF. But current ENSDF ground-state to ground-state feeding biased by one measurement with likely statistical only errors reported.

P. Shuai, et al., PRC 105, 054312 (2022)

Multiple γ rays: ⁸⁸Rb 2D Decay Path Information Fit at the same time as the total MTAS spectrum.

Gating on total energy and looking at the individual modules

Can easily identify individual high energy γ rays!

Sharing between modules gives individual γ-ray information.

Compare the ground-state to ground-state systematic uncertainties for 88 Rb, $I_{\beta gs} = 78.5(2.0)\%$, and 88 Kr, $I_{\beta gs} = 13.5(1.0)\%$.

⁸⁸Kr and ⁸⁸Br Ground-State Systematic Uncertainties

Source	GEANT4 simulation	β spectral shape	Energy calibration	Background coincidence	Neighboring nuclei contamination	β trigger threshold	Statistical
⁸⁸ Rb	2%	0.3%	0.1%	0.3%	0.2%	0.2%	0.1%
⁸⁸ Kr	0.5%	1.0%	0.1%	0.1%	1.0%	2.0%	0.1%

P. Shuai, et al., PRC 105, 054312 (2022)

First Steps Towards Isolating Individual β Transitions in Complex β Decays Identifying First-Forbidden Unique from Allowed with the Modular Total Absorption Spectrometer

Identification of individual β shapes from complex β decays is possible ORNL's Modular Total Absorption Spectrometer (MTAS) is a very efficient β and γ -ray detector. The MTAS detector can distinguish a first forbidden unique β decay and an allowed β decay.

CAK RIDG

First Steps Towards Isolating Individual β Transitions in Complex β Decays Identifying First-Forbidden Unique from Allowed with the Modular Total Absorption Spectrometer

Leads to the suggestion we can identify and measure β-shape factors We have been funded with a Nuclear Data Funding Opportunity to do this and the work is ongoing.

CAK RID

⁹⁸Nb β Decay - Impact of Increased Precision

MTAS ⁹⁸Nb ground-state to ground-state feeding, $I_{\beta gs} = 61(3)\%$, in agreement with ENSDF ⁹⁸Nb ground-state to ground-state feeding, $I_{\beta gs} = 57(6)\%$, but 2x improvement in precision.

This leads to about a 5% increase in the number of detected antineutrinos from each ${}^{98}Nb \beta$ decay.

B.C. Rasco, et al., PRC 105, 064301 (2022)

⁹⁸Nb β Decay - Isolating $0^+ \rightarrow 0^+$ Conversion Electrons

MTAS ⁹⁸Nb feeding to first excited 0⁺ level, $I_{\beta 0^+} = 20(2)\%$, in agreement with ENSDF ⁹⁸Nb feeding to first excited 0⁺ leve, $I_{\beta gs} = 20(4)\%$, but 2x improvement in precision.

B.C. Rasco, et al., PRC 105, 064301 (2022)


```
<sup>142</sup>Cs, <sup>142</sup>Ba, and <sup>142</sup>La \beta Decays
```


Pandemonium Effect in Action

Log Scale! So big differences.

Large increase to high energy level feedings detected.

β-Feeding to first excited state shrinks from 7.2+-1.2% to almost zero.

B.C. Rasco, *et al.*, Phys. Rev. Lett. **117**, 092501 (2016) M. Wolińska-Cichocka, *et al.*, Submitted to PRC (2023)

13 COAK RIDGE

 ^{142}Cs and $^{142}La~\beta$ Decays Improved Half-life Precision by ${\sim}2x$ and ${\sim}5x,$ Respectively.

Nuclei	Q_{eta} [51]	GS Spin [49]	$T_{1/2}$ ENSDF	$T_{1/2}$ MTAS
^{142}Cs	$7328(8) \mathrm{keV}$	0-	1.684(14) s	1.678(8) s
142 Ba	2182(8) keV	0^+	$10.6(2) \min$	$10.5(15) \min$
142 La	4509(6) keV	2^{-}	$91.1(5) \min$	$91.2(1) \min$
$^{142}\mathrm{Ce}^{a}$		0^+	$>5\times10^{16}~{\rm yr}$	

M. Wolińska-Cichocka, *et al.*, Submitted to PRC (2023)

¹⁴²Cs, ¹⁴²Ba, and ¹⁴²La β Decays

Ground-State and first-excited state β -feeding intensities biggest changes.

Detected ¹⁴²La Antineutrinos reduced by 5%.

Change comes mainly from reduced ground-state to ground-state feeding when compared with ENSDF value.

With its 4.5-5.9% Cummulative Fission yield this is impactful.

M. Wolińska-Cichocka, et al., Submitted to PRC (2023)

CAK RIDGE

MTAS - ORNL

CAK RIDGE

16

Electron Capture directly to the ⁴⁰Ar ground state has never been experimentally measured!

Ground-State Electron Capture in ENSDF as 0.2(1)% but predictions range from 0.0-0.8%

This Feeding Impacts: 1) Neutrinoless double β-decay predictions 2) Background for exotic physics experiments 3) Solar-System and Geochronology Precision

M. Stukel, *et al.*, NIM A 1012, 165593 (2021)
L. Hariasz, *et al.*, arXiV:2211.10343, (2022)
M. Stukel, *et al.*, arXiV:2211.10319, (2022)

KDK - MTAS + X-Ray Detector

0.45mm Thick Silicon Drift Dectector (SDD)

Source, created at ORNL, is 11µm thick 16.5% enriched ⁴⁰K allowing 3 keV x rays to escape source.

Source is about 3 B.E activity.

MTAS tags ~98% of 1460 keV γ rays.

MTAS Plug

M. Stukel, *et al.*, NIM A **1012**, 165593 (2021) L. Hariasz, et al., arXiV:2211.10343, (2022) M. Stukel, *et al.*, arXiV:2211.10319, (2022)

KDK - MTAS + X-Ray Detector

Simple Single γ Decay with SDD X Ray Trigger: 54Mn

A single 835 keV γ ray with 5.4 and 5.9 keV X Rays (+Auger Electrons)

A 4 µs coincidence window and our background rate of ~2500 counts per second has about a 1% background coindence rate

M. Stukel, et al., NIM A 1012, 165593 (2021) L. Hariasz, et al., arXiV:2211.10343, (2022) M. Stukel, *et al.*, arXiV:2211.10319, (2022)

Thank You for Your Attention

Total Absorption Physics Impacts
<u>Reactor Physics</u>

The Reactor Antineutrino Anomaly (RAA) is the over prediction of antineutrinos emitted from a reactor

Due to the Pandemonium Effect, low efficiency experiments *systematically* underestimate β-decay energy emitted as g rays while overestimating energy emitted as electrons and antineutrinos.

For the Pandemonium effect, this is a one way correction.

Also See P. Huber, PRC 84, 024617, 2011 G. Mention, *et al.*, PRD 83, 073006, 2011 A.A. Sonzogni, *et al.*, PRC 98, 014323 (2018)

21

MTAS – Modular Total Absorption Spectrometer

Analysis being performed by P. Shuai of JINPA/ORNL based on technique first presented in B.C. Rasco, *et al.*, Phys. Rev. C **95**, 054328 (2017)

21 **CAK RIDGE** National Laboratory

MTAS - ANL

22

Focus on Decay Heat and Antineutrino Predictions

Total β-Feeding: Ground-State Feeding

Excited Level Feeding

Decay Via: γ rays Conversion Electrons (no γ rays) β-delayed neutrons

B.C. Rasco, *et al.*, Phys. Rev. Lett. 117, 092501 (2016)
A. Fijałkowska, *et al.*, PRL 119, 052503 (2017)
B.C. Rasco, et al., PRC (2017)
P. Shuai, et al., PRC (2022)
B.C. Rasco, et al., PRC (2022)
M. Wolińska-Cichocka submitted to PRC (2023)

Total Absorption Physics Impacts - Neutrons

¹³⁷I β-Delayed Neutron Probability

MTAS $P_n = 7.9(5)\%$

ENSDF $P_n = 7.66(14)\%$ **Complete Beta-Feeding Intensities**

Beta-Delayed Neutron Branching Intensities Beta-Delayed Neutron Energy Spectra

CAK RIDGE

ational Laboratory

Total Absorption Physics Impacts

Complete Beta-Feeding Intensities

Beta-Decay Ground-State Feeding Intensities Beta-Delayed Neutron Branching Intensities Beta-Delayed Neutron Energy Spectra Improved Nuclear Data Endpoint Energies

B.C. Rasco, et al., Phys. Rev. C 95, 054328 (2017)

24 **CAK RIDGE** National Laboratory

MTAS – Ground-State Feeding

ENSDF ground-state feeding = 95.2(7)% (Uncertainty way too small!)

MTAS has measured up to 53 MeV electrons

MTAS – Modular Total Absorption Spectrometer

$MTAS - {}^{142}Cs$

MTAS – Modular Total Absorption Spectrometer

MTAS – Modular Total Absorption Spectrometer

Antineutrino spectrum for ⁹⁸Nb MTAS assuming allowed β decay spectrum. ENSDF antineutrino spectrum for ⁹⁸Nb (treated as allowed)

