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Not exactly a new problem

Free Antineutrino Absorption Cross Section. II. Expected Cross Section
from Measurements of Fission Fragment Electron Spectrum*
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Direct fission rate measurement
using a in situ fission chamber.

Coincidence between propor-

tional counter and scintillator to £, KINETIC ENERGY (MEV)
reject s
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Caveats

e The rate anomaly and spectrum anomaly will be
discussed separately

rm

* The authors for nearly everything I show are here,
so I may re-direct questions to the actual experts
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The Rate Anomaly



The reactor anomaly

Daya Bay
R=0.947 + 0.022
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Daya Bay, 2014

Mueller et al., 2011, 2012 — where have all the
neutrinos gone?
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Status quo early 2021

1.5
- 1 R 3 different flux mod-
S t s A { cls, data from 2 differ-
1 ent experiments
; Except for U2335:

+ the models agree
within error bars
+ the models agree with

neutrino data

3 GLoBESfit v1.0 | 3 GLoBESfit v1.0
| U235 has smallest error

bars, not surprising that
discrepancies show up
first.
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Berryman, PH, 2020
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Fuel evolution

2
12 Extended Data Fig. 9 Antineutrino yield of 22°U fission.

GLOBESfit v2.0 STEREOQ

All Rates

Rate Evolution

Estienne, Fallot et al.

Integrated Rates
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235

Berryman, PH, 2020, 2022 STEREOQ, 2023
U235 seems to “own’ all of the deficit.
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Why is this so complicated?

235 U

239 Pu

stablen

fission yield

M.
8E-5 0.004 0.008
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Summation method — EF

R Take fission yields from

. DB/SM-2018 database.
DB/SM-2017
o DBHM.

Take beta decay informa-

T SM2018/HM. < tion from database.
SM-2017/H.M.
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For the most crucial
isotopes use [-feeding
functions from total
absorption v spectroscopy.

—_

Ratio SM over H.M.
- 2O

Estienne et al., 2019
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Conversion method - HM
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Schreckenbach, er al. 1985.

239U foil inside the High
Flux Reactor at ILL

Electron  spectroscopy
with a magnetic spec-

frometer

Same method used for
239Py and ?*'Pu

Mueller et al., 2011; PH,
2011
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Virtual branches

Ey=8.09MeV, =0.204 Ey=7.82MeV, n=0.122
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1 — fit an allowed (-spectrum with free normalization 7 and
endpoint energy F the last s data points

2 — delete the last s data points

3 — subtract the fitted spectrum from the data

4 — goto 1
Invert each virtual branch using energy conservation into a
neutrino spectrum and add them all.
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Zeff — how to parametrize

— HM original

— Fit to average Fermi function

Bin-wise average Fermi function

Hayes et al. point out that the details of how the
parameterization for Z.g 1s done could bias the
neutrino spectrum.
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Zeff — comparison

PRELIIMINARY

— HM ariginal
— Fit to average Fermi function
Bin-wise average Fermi function
----- HM ariginal beta residuals
Fit to average Fermi function beta residuals

Bin-wise average Fermi function

Using v and beta spectrum derived from the same
summation calculation allows to test how well the
different methods reproduce the v spectrum — fit to
average Fermi function leads to large bias.
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Forbidden decays

Ey=10MeV e,/ final state can form

A=140

a singlet or triplet spin
state J=0 or J=1

Allowed:
s-wave emission ([ = 0)

Forbidden:
p-wave emission ([ = 1)
or/ > 1

Significant nuclear structure dependence in forbidden
decays— sizable uncertainties?
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Forbidden decays

—— Treat all transitions as allowed GT
Treat all non-unique forbidden transitions as [Z,r]o'
Treat all non-unique forbidden transitions as [Z,r]1'
Treat all non-unique forbidden transitions as [Z,r]z'

Potential source of uncertainty.

Hayes et. al, 2013 point
out that in non-unique for-
bidden decays a unknown

mixture  of  different
operators 1s involved.
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How many forbidden decays?
Based on JEFF fission yields and using ENSDF
spin-parity assignments

allowed
18! non-unique
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A way forward?

If we knew on a
statistical basis the
R mixture of opera-
oo tors as a function
of endpoint energy,
errors could Dbe

All forbidden as GT 2~

——— Only with allowed

—— With allowed and forbidden gre atly re duced °

NB: based on syn-
thetic spectra.

L1, Zhang, 2019
Maybe computational approaches exist?
see e.g. Hayen ef al, 2018
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Shell model — HKSS

Daya Bay
Forbidden decays major

source of systematic.

Microscopic  shell model

calculation of 36 forbidden
1sotopes, otherwise similar to
HM.
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Increases the IBD rate
anomaly by 40%, but the
uncertainty increases by only
13% relative to HM

Prompt energy [MeV]

Hayen, et al. 2019
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Kill BILL?

moderator

(0,0)
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80 cm to the
| center of

| reacter core

| (Electron detector in focal plane: multi chamber proportional
SCHEMATIC VIEw OF THE TARGET SITE _ counter in transmission, rear mounted scintillator in coincidence)

Neutron flux calibration standards different for U235 and Pu239:
207Pb and 197Au respectively.

Combined with potential differences in neutron spectrum — room
for a 5% shift of U235 normalization?

A. Letourneau, A. Onillon, AAP 2018

P Huber — n. 20/31



2021 beta measurement

Relative measurement of
U235 and Pu239 tar-
gets under 1dentical con-
ditions.

Beta detection with stil-
bene.

This slide and the following are based on V. Kopeikin, M.
Skorokhvatov, O. Titov (2021) and V. Kopeikin , Yu. Panin, A.
Sabelnikov (2020) and we will refer to this as the Kurchatov
Institute (KI) data.
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2021 beta results

.5, O N
(pa/Pp)xr> (Pa/PRIILL
2.6

At relevant energies
the new measurement
1s about 5% below the
previous one

Systematics 1s diffi-
cult in these measure-
ments, but no obvious
1SSues.

6 7 8

Kinetic energy £g, MeV
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2021 beta impact

Based on table V of Giunti, Li, Ternes, Xin, arXiv:2110.06820

HM - conversion

eF HKSS — conversion

" + forbidden decays
HKSS-KI EF — summation
unclear theory error

KI — HM + KI data
EF HKSS+KI — HKSS +KI
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HKSS-KI

With the KI correction agree-

ment between summation and
conversion improved.

EF

m RAA significance reduced to
HKSS-KI less than 20

0.90 0.95

Combined

ratio experiement/predicion
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The Spectrum Anomaly

aka the S MeV Bump



The SMeV bump

RENO 2016 (Nbdiﬁed AverageR = 1)
NEOS 2016 (Nbdified AverageR = 1)
: Daya Bay 2016 :

: Double Chooz IV - ND
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Visible Energy (MeV)

Double Chooz 2019
Contains only 0.5% of all neutrino events — not
important for sterile neutrinos

Yet, statistically more significant than the RAA!
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Things which are not the cause

e Fission yields Dwyer, Langford, 2014; Hayes, et al.
2015; Sonzogni, et al. 2016

e Neutron spectrum Hayes, Vogel, 2016; Littlejohn et al.
2018

 New Physics Brdar, Berryman, PH, 2018
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Shell model — HKSS

Daya Bay
Forbidden decays major

source of systematic.

Microscopic  shell model

calculation of 36 forbidden
1sotopes, otherwise similar to
HM.
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Increases the IBD rate
anomaly by 40%, but the
uncertainty increases by only
13% relative to HM

Prompt energy [MeV]

Hayen, et al. 2019
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Beta feeding functions
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[etourneau et al. 2022

Simple single parameter model for beta feeding
functions, parameter determined from TAGS data.




Beta feeding functions

s This would require
R | a shape distortion in
both the Schreckenbach
(magnetic spectrometer)
and Kurchatov (scintilla-

tor) beta measurements
AT between U235 and
Pu239...

Electron energy [MeV]

[etourneau et al. 2022
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Summary — Rates

* The Kurchatov result for the U235/Pu239 beta
ratio seems to bring all neutrino data and all
calculations 1nto agreement on the rate

e Subleading corrections may remain from
forbidden decay, beta feeding, conversion
systematics etc. — comparable to experimental
systematics from the reactor and detector

Is there any more work needed?

Who would be the end user for improved predictions
(=smaller error bars)?

Or 1s this essentially solved?
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Summary — Spectrum

* In absolute terms this 1s a small effect (0.5% of
all IBD) only visible due to the fantastic precision
of recent neutrino data.

* So far all models which explain the bump also
have do discard some other pieces of data.

 In particular, obtaining a sufficiently large bump

In neutrinos spoils the agreement with beta data
(both ILL and Kurchatov)

JUNO-TAO will provide new very precise neutrino
spectrum data — do we need a new beta measurement
with a matched level of precision?

Theory uses parameterized phenomenological models
— how can we improved that?
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