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Not exactly a new problem

Neutron beam guide (outside of
reactor)

Direct fission rate measurement
using a in situ fission chamber.

Coincidence between propor-
tional counter and scintillator to
reject γs
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Caveats

• The rate anomaly and spectrum anomaly will be
discussed separately

• The authors for nearly everything I show are here,
so I may re-direct questions to the actual experts
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The Rate Anomaly
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The reactor anomaly
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Mueller et al., 2011, 2012 – where have all the
neutrinos gone?
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Status quo early 2021

3 different flux mod-
els, data from 2 differ-
ent experiments

Except for U235:
+ the models agree
within error bars
+ the models agree with
neutrino data

U235 has smallest error
bars, not surprising that
discrepancies show up
first.

Berryman, PH, 2020
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Fuel evolution

Berryman, PH, 2020, 2022 STEREO, 2023

U235 seems to “own” all of the deficit.
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Why is this so complicated?

N=50 N=82

Z=50

235U

239Pu

stable

fission yield

8E-5 0.004 0.008
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β-branches
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Summation method – EF
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Estienne et al., 2019

Take fission yields from
database.

Take beta decay informa-
tion from database.

For the most crucial
isotopes use β-feeding
functions from total
absorption γ spectroscopy.
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Conversion method – HM

235U foil inside the High
Flux Reactor at ILL

Electron spectroscopy
with a magnetic spec-
trometer

Same method used for
239Pu and 241Pu

Mueller et al., 2011; PH,

2011

Schreckenbach, et al. 1985.
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Virtual branches
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1 – fit an allowed β-spectrum with free normalization η and

endpoint energy E0 the last s data points

2 – delete the last s data points

3 – subtract the fitted spectrum from the data

4 – goto 1

Invert each virtual branch using energy conservation into a

neutrino spectrum and add them all.
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Zeff – how to parametrize

Hayes et al. point out that the details of how the
parameterization for Zeff is done could bias the
neutrino spectrum.
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Zeff – comparison

Using ν and beta spectrum derived from the same
summation calculation allows to test how well the
different methods reproduce the ν spectrum – fit to
average Fermi function leads to large bias.
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Forbidden decays
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e,ν̄ final state can form
a singlet or triplet spin
state J=0 or J=1

Allowed:
s-wave emission (l = 0)

Forbidden:
p-wave emission (l = 1)
or l > 1

Significant nuclear structure dependence in forbidden
decays→ sizable uncertainties?
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Forbidden decays
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Treat all non-unique forbidden transitions as [Σ,r]0-

Treat all non-unique forbidden transitions as [Σ,r]
1-

Treat all non-unique forbidden transitions as [Σ,r]
2-

Hayes et. al, 2013 point
out that in non-unique for-
bidden decays a unknown
mixture of different
operators is involved.

Potential source of uncertainty.
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How many forbidden decays?

Based on JEFF fission yields and using ENSDF
spin-parity assignments
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A way forward?
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Li, Zhang, 2019

If we knew on a
statistical basis the
mixture of opera-
tors as a function
of endpoint energy,
errors could be
greatly reduced.

NB: based on syn-
thetic spectra.

Maybe computational approaches exist?
see e.g. Hayen et al, 2018
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Shell model – HKSS

Hayen, et al. 2019

Forbidden decays major
source of systematic.

Microscopic shell model
calculation of 36 forbidden
isotopes, otherwise similar to
HM.

Increases the IBD rate
anomaly by 40%, but the
uncertainty increases by only
13% relative to HM
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Kill BILL?

Neutron flux calibration standards different for U235 and Pu239:
207Pb and 197Au respectively.

Combined with potential differences in neutron spectrum – room
for a 5% shift of U235 normalization?

A. Letourneau, A. Onillon, AAP 2018
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2021 beta measurement

Relative measurement of
U235 and Pu239 tar-
gets under identical con-
ditions.

Beta detection with stil-
bene.

This slide and the following are based on V. Kopeikin, M.

Skorokhvatov, O. Titov (2021) and V. Kopeikin , Yu. Panin, A.

Sabelnikov (2020) and we will refer to this as the Kurchatov

Institute (KI) data.
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2021 beta results

At relevant energies
the new measurement
is about 5% below the
previous one

Systematics is diffi-
cult in these measure-
ments, but no obvious
issues.
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2021 beta impact
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Based on table V of Giunti, Li, Ternes, Xin, arXiv:2110.06820

0.85 0.90 0.95 1.00

ratio experiement/predicion

HM – conversion
HKSS – conversion

+ forbidden decays
EF – summation

unclear theory error
KI – HM + KI data
HKSS+KI – HKSS +KI

With the KI correction agree-
ment between summation and
conversion improved.

RAA significance reduced to
less than 2σ
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The Spectrum Anomaly
aka the 5 MeV Bump

P. Huber – p. 24/31



The 5 MeV bump
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Contains only 0.5% of all neutrino events – not
important for sterile neutrinos

Yet, statistically more significant than the RAA!
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Things which are not the cause

• Fission yields Dwyer, Langford, 2014; Hayes, et al.

2015; Sonzogni, et al. 2016

• Neutron spectrum Hayes, Vogel, 2016; Littlejohn et al.

2018

• New Physics Brdar, Berryman, PH, 2018
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Shell model – HKSS

Hayen, et al. 2019

Forbidden decays major
source of systematic.

Microscopic shell model
calculation of 36 forbidden
isotopes, otherwise similar to
HM.

Increases the IBD rate
anomaly by 40%, but the
uncertainty increases by only
13% relative to HM
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Beta feeding functions

Letourneau et al. 2022

Simple single parameter model for beta feeding
functions, parameter determined from TAGS data.
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Beta feeding functions

Letourneau et al. 2022

This would require
a shape distortion in
both the Schreckenbach
(magnetic spectrometer)
and Kurchatov (scintilla-
tor) beta measurements
between U235 and
Pu239. . .
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Summary – Rates

• The Kurchatov result for the U235/Pu239 beta
ratio seems to bring all neutrino data and all
calculations into agreement on the rate

• Subleading corrections may remain from
forbidden decay, beta feeding, conversion
systematics etc. – comparable to experimental
systematics from the reactor and detector

Is there any more work needed?

Who would be the end user for improved predictions
(=smaller error bars)?

Or is this essentially solved?

P. Huber – p. 30/31



Summary – Spectrum

• In absolute terms this is a small effect (0.5% of
all IBD) only visible due to the fantastic precision
of recent neutrino data.

• So far all models which explain the bump also
have do discard some other pieces of data.

• In particular, obtaining a sufficiently large bump
in neutrinos spoils the agreement with beta data
(both ILL and Kurchatov)

JUNO-TAO will provide new very precise neutrino
spectrum data – do we need a new beta measurement
with a matched level of precision?

Theory uses parameterized phenomenological models
– how can we improved that?
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