Status of JUNO

Zeyuan Yu, IHEP On behalf of JUNO collaboration 2023-01-17

The 2nd IAEA Technical Meeting on Nuclear Data Needs for Antineutrino Spectra Applications

Jiangmen Underground Neutrino Observatory

JUNO collaboration

74 institutes and 709 collaborators

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	Tsinghua U.	Germany	U. Tuebingen
Belgium	Universite libre de Bruxelles	China	UCAS	Italy	INFN Catania
Brazil	PUC	China	USTC	Italy	INFN di Frascati
Brazil	UEL	China a	U. of South China	Italy	INFN-Ferrara
Chile	PCUC	China	Wu Yi U.	Italy	INFN-Milano
Chile	SAPHIR	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China 🚽	Xiamen University	Italy	INFN-Perugia
China	CAGS	China China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China 🔍	NUDT	Latvia	IECS
China	CIAE	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)
China	DGUT	China	ECUT-Nanchang City	Russia	INR Moscow
China	Guangxi U.	Croatia	PDZ/RBI	Russia	JINR
China	Harbin Institute of Technology	Czech	Charles U.	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
China	NCEPU	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	RWTH Aachen U.	Thailand	SUT
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	FZJ-IKP	USA	UC Irvine
China	SYSU	Germany	U. Mainz		

Since first IAEA TM in 2019

Smooth detector assembling **Expect to finish by end of 2023**

Reactor Atmospher

New physics ~5000 IBDs for ~60 IBDs per day Several per day Hundreds per day Several IBDs per CCSN @10 kpc dav **Neutrino oscillation & properties** Neutrinos as a probe IBD: inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$ CCSN: core-collapse supernova

PMT characterization EPJ C 82 (2022) 12, 1168, NIM A 1005 (2021) 165347 Radio purity JHEP 11 (2021) 102 Electronics NIM A 985 (2021) 164600 Calibration JHEP 03 (2021) 004 and others

Reactor neutrino oscillation Chin.Phys.C 46 (2022) 12, 123001 Solar neutrino oscillation Chin.Phys.C 45 (2021) 2, 023004 Atmospheric neutrino flux Eur.Phys.J.C 81 (2021) 10 Diffuse supernova neutrinos JCAP 10 (2022) 033 Proton Decay arXiv: 2212.08502 and others

Precision reactor neutrino oscillation

In six years:

determine neutrino mass ordering at 3 σ precision of sin² θ_{12} , Δm_{21}^2 , $|\Delta m_{32}^2| < 0.5\%$

Requirements

- **1. Statistics**
 - 20 kt liquid scintillator
 - 26.6 GW_{th} power
- 2. Energy measurement

Energy resolution 3% at 1 MeV

Energy scale calibrated to 1%

- 3. Spectral shape of reactor neutrinos In [2.5,6] MeV, 1% uncertainty constrained by TAO (Ruhui' s talk)
- 4. Background control

Material screening, clean installation, etc.

Detector progresses

JUNO detector in a good shape

- ✓ All 265 acrylic panels produced
 - Assembly and bonding is in good shape
- ✓ Stainless Steel structure
 - Assembly finished in Sept. 2022
- ✓ 20012 20" PMTs + 25600 3" PMTs
 - Production and performance test done
 - More than 300 PMTs have been installed

✓ Liquid scintillator

Commissioning of purification plants to be started

Underground experimental hall

In the water pool, temperature 21±1°C, class of cleanness better than 100,000

LS hall

Electronics room

Water room

Central detector -- SS structure

A D = 40.1 m stainless steel structure supports the acrylic vessel via 590 connecting bars

- ✓ No wielding was used during the assembly.
- ✓ Natural radioactivity level smaller than 1 ppb for supporting SS bars.
- $\checkmark\,$ High assembly precision achieved to ensure the 3 mm gaps among PMTs.

March 2022

Central detector – acrylic vessel

Acrylic container:

- ✓ Inner diameter: 35.40±0.04 m
- ✓ Thickness: 124±4 mm
- ✓ Light transparency > 96% @ LS
- ✓ Radiopurity: U/Th/K reached 1 ppt

Assembly and bonding

Pre-assembly at Donchamp

Polishing

Cleaning

50 µm PE film protection

Liquid scintillator

20 kt liquid scintillator: LAB based, PPO as fluorescence, bis-MSB as wavelength shifter

- ✓ Good transparency: attenuation length > 20m @ 430 nm, no doping, AI_2O_3 purification and distillation
- ✓ Ultrapure: required radioactivity 10^{-15} g/g for reactor and 10^{-17} g/g for solar, distillation and others
- ✓ Full system commissioning will start soon

Photomultiplier tubes

Synergetic 20-inch and 3-inch PMT systems to control systematics

All PMTs produced, tested, and instrumented with waterproof potting. More than 300 tubes installed

		LPMT (20-inch)		SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity	5000	15012	25600		
Charge Collection		Dynode	MCP	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate	Bare	15.3	49.3	0.5	
[kHz]	Potted	17.0	31.2	0.5	
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-1	[0, 100] PEs		[0, 2] PEs		
Coverage		75%		3%	
Reference		EPJC 82, 1168 (2022)		NIM.A 1005 (2021) 165347	

12.6k NNVT PMTs with highest PDE are selected for light collection from LS

and the rest are used in the Water Cherenkov detector.

Electronics

Underwater electronics to improve signal-to-noise ratio for better energy resolution

3 20-inch PMTs connected to one underwater box

1 GHz waveform digitization, expected loss rate < 0.5% in 6 years

128 3-inch PMTs connected to one underwater box

Electronics assembly and tests done

Calibration

14

1D,2D,3D scan systems with multiple calibration sources

Cable system finished prototype test

Calibrate energy scale to better than 1% using gamma peaks and cosmogenic ¹²B beta spectrum

A general interest:

Precise prediction of beta shapes of cosmogenic light isotopes

Muon veto system

~650 m rock overburden (1800 m.w.e.) $\rightarrow R_{\mu}$ = 4 Hz in LS, $\langle E_{\mu} \rangle$ = 207 GeV

- ✓ About 127 ⁹Li and 40 ⁸He isotopes, but 57 antineutrinos per day
- ✓ Effective veto strategy keeps 47.1 antineutrinos but only 0.8 residual Li/He bkg

35 kton of ultrapure water serving as passive

shield and water Cherenkov detector.

 ✓ 2400 20-inch MCP PMTs, detection efficiency of cosmic muons larger than 99.5%

Plastic scintillator from the OPERA

- ✓ About 50% coverage on the top, three layers to reduce accidental coincidence
- ✓ All scintillator panels arrived on site in 2019

Radiopurity control

Reduced by 15% compared to the design. Ref: JHEP 11 (2021) 102

Singles (R < 17.2 m, E > 0.7 MeV)	Design [Hz]	Change [Hz]	Comment
LS	2.20	0	
Acrylic	3.61	-3.2	10 ppt -> 1 ppt
Metal in node	0.087	+1.0	Copper -> SS
PMT glass	0.33	+2.47	Schott -> NNVT/Ham
Rock	0.98	-0.85	3.2 m -> 4 m
Radon in water	1.31	-1.25	200 mBq/m ³ -> 10 mBq/m ³
Other	0	+0.52	Add PMT readout, calibration sys
Total	8.5	-1.3	

Radiopurity control on raw material:

- ✓ Careful material screening
- ✓ Meticulous Monte Carlo Simulation
- ✓ Accurate detector production handling

Liquid Scintillator Filling

- $\checkmark\,$ Recirculation is impossible at JUNO due to its large size
- \rightarrow Target radiopurity need to be obtained from the beginning
- ✓ Strategies:
- **1.** Leakage (single component < 10^{-6} mbar·L/s)
- 2. Cleaning vessel before filling
- 3. Clean environment
- 4. Water/LS filling

Watching nuclear reactors, the Solar System, and the Milky Way at Jiangmen

17-

江門中院不

Luna

Jiangmen Underground Neutrino Obser

in all the lot

Reactor neutrino oscillation

Inverse beta decay reaction

 $\bar{\nu}_e + p \rightarrow e^+ + n$

 $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$

(matter effect contributes maximal ~4% correction at around 3 MeV, arXiv:1605.00900, arXiv:1910.12900)

Design in Physics book → this update J. Phys. G 43:030401 (2016)

Energy nonlinearity

Energy nonlinearity: instrumental charge measurement and LS nonlinear light output

- ✓ Instrumental nonlinearity calibrated with synergetic 20-inch and 3-inch PMT systems
- \checkmark LS nonlinearity calibrated with gamma sources and cosmogenic ¹²B isotopes

Prospects

- Better understanding and bench-top measurements of LS optical properties
- ✓ Use more cosmogenic isotopes in the energy calibration, ¹⁰C, ¹¹C, ¹²N, ⁶He and others

Update of energy resolution

- **Cherenkov** radiation
 - Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- **Detector uniformity and reconstruction**

JUNO and TAO combined analysis

Precise measurement of neutrino oscillation requires precise reactor neutrino shape Fitter level joint analysis between JUNO and TAO

Neutrino Mass Ordering

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	4 Hz (33%↑)
Muon veto efficiency	83%	93% (12% ↑)
Signal rate	60 /day	47.1 /day (22%↓)
Backgrounds	3.75 /day	4.11 /day (10%↑)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)
Shape uncertainty	1%	JUNO+TAO
3σ NMO sensitivity exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs \times 26.6 GW _{th}

JUNO sensitivity on NMO: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure. Paper coming soon.

Estimation of NMO sensitivity with combined reactor + atmospheric neutrino analysis under preparation

Neutrino Mass Ordering

JUNO sensitivity on NMO: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure. Paper coming soon.

Estimation of NMO sensitivity with combined reactor + atmospheric neutrino analysis under preparation

Neutrino oscillation parameters

The improvement in precision over existing constraints will be about one order of magnitude

Neutrino oscillation parameters

- Solar parameters, θ_{12} and Δm_{21}^2 , dominated by systematics
 - Improving reactor-related systematics, such as SNF and Non-equilibrium, both with 30% input uncertainties, could slightly improve Δm^2_{21} precision

Δm^2_{31}	lσ (%)		Δm_{21}^2	lσ (%)		$\sin^2 \theta_{12}$	lσ (%)	
Statistics	0.17		Statistics	0.16		Statistics	0.34	
Reactor:			Reactor:			Reactor:		
- Uncorrelated	< 0.01		- Uncorrelated	0.01		- Uncorrelated	0.10	
- Correlated	0.01		- Correlated	0.03		- Correlated	0.27	
- Reference spectrum	0.05		- Reference spectrum	0.07		- Reference spectrum	0.09	
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07		- Spent Nuclear Fuel	0.05	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14		- Non-equilibrium	0.10	
Detection:			Detection:			Detection:		
- Efficiency	0.01		- Efficiency	0.02		- Efficiency	0.23	
- Energy resolution	< 0.01		- Energy resolution	0.01		- Energy resolution	0.01	
- Nonlinearity	0.04		- Nonlinearity	0.05		- Nonlinearity	0.09	
- Backgrounds	0.04		- Backgrounds	0.18		- Backgrounds	0.20	
Matter density	0.01		Matter density	0.01		Matter density	0.07	
All systematics	0.08		All systematics	0.27		All systematics	0.40	
Total	0.19		Total	0.32		Total	0.52	
	0.0	0.1 %	L	0	0 0.2		0	.0 0.2 0.4

25

Solar neutrinos

A research area that neutrino and nuclear physics collaborated well

- ✓ Large ³He + ⁴He fusion sigma, 1958
- ✓ Transition from (g.s) of ³⁷Cl to 5.1MeV state of ³⁷Ar is super allowed, 1963
- ✓ Improvements of ⁸B neutrino shape prediction from 1980s to 2010s
 - ✓ Energy level distributions of ⁸Be first excited state

Plots from the 5th solar neutrino conference in 2018

⁸B solar neutrinos in JUNO

- Use ⁸B solar neutrinos to measure θ_{12} and Δm^2_{21} , similar precision with current solar experiments
- Dominated background: cosmogenic light isotopes

Solar neutrinos in JUNO

- Could measure simultaneously ⁷Be, pep and CNO solar neutrinos with highly improved accuracy with respect to current state-of-the-art in the solar neutrino field
- Could be sensitive to ¹³N and ¹⁵O neutrinos
- Provide probes of solar physics

Diffuse Supernova Neutrino Background

Diffuse Supernova Neutrino Background

- Dominated background: neutral current of atmospheric neutrinos and ¹²C nuclei
- Use common generator GENIE and NuWro to predict neutrino interactions
 - A statistical configuration model to determine the pdf of excited states in the final-state nuclei
- Use TALYS to perform de-excitation
 - De-excited gammas induce the energy-dependent background rejection ratio

Summary

- ✓ Detector assembly is moving forward smoothly, expected to finish in this year
- ✓ Physics sensitivities have been investigated thoroughly
- Neutrino physics in JUNO will gain benefits from nuclear community
 - Briefly summarized in this talk, of course not all topics are covered

Light unstable isotopes

	Lifetime	Radiation energy (MeV)	Primary process	
Neutron	30us in GdLS 200us in LS	8 (nGd) 2.2 (nH)	$\pi^- + {}^1H$	
¹² N	15.9 ms	17.34 (β ⁺)	$^{12}C(p,n)^{12}N$	Calibration
¹² B	29.1 ms	13.37 (β ⁻)	$^{12}C(n,p)^{12}B, ^{12}C(\mu^{-},\nu_{\mu})^{12}B$	Calibration
⁸ He	171.7 ms	10.65 (β ⁻ n)	$^{12}C(\pi^-, nppp)^8He$	Critical bkg
°C	182.5 ms	16.50 (β ⁺)	¹² C(π ⁺ , ³ H) ⁹ C	Critical bkg
⁹ Li	257.2 ms	13.61 (β ⁻ n)	¹² C(π ⁻ , ³ He) ⁹ Li	Critical bkg
⁸ B	1110 ms	17.98 (β+α)	$^{12}C(\pi^+, ^{2}H^{2}H)^{8}B$	Critical bkg
⁸ Li	1210 ms	16.00 (β-α)	$^{12}C(n,p\alpha)^8Li$	Critical bkg
¹¹ Be	19.9 s	11.50 (β ⁻)	¹² C(n, pp) ¹¹ Be	Critical bkg
¹⁰ C	27.8 s	3.65 (β ⁺ γ)	$^{12}C(\pi^+, np)^{10}C$	Calibration?
¹¹ C	29.4 min	1.98 (β ⁺)	$^{12}C(\gamma, n)^{11}C$	Calibration?

Discussions

- Our needs
 - Precise shape predictions, not only for beta spectra, but also for accompanying alphas and neutrons.
 - Critical for detector calibration and background understanding
- Our questions and current problems
 - How to estimate shape uncertainties for the common beta shape prediction methods?
 - Fermi function + several corrections
 - Can we rely on the J^{π} in the nuclear database and calculate beta shape correction?
 - Decay generators, such as BetaShape, Geant4 don't fine tune the shape of light nuclei

Contraction in

¹¹Be

 ${}^{10}Be(n,\gamma){}^{11}B Q_m = 11.4542 MeV^b$

Decay data from NNDC. Plotting by Chengzhuo Yuan from IHEP

⁸B 0.5MeV[3] .05[3].05[.20210[3] $2^{+[1]}, 1^{[1]}, 0$ KeV $_{772,2}(10)$ ms^[6] = 396.14 (p 100%^[3]) 8L j °C $Q_{EC} = 17979.9^{a}(\beta^{+})$ 108.1(5)KeV^[1] 2^{+[1]}, 0 + 1^[1], 16626(3)^[1] ~0.002%° 3,3[1 838.40(36)ms^[5] 2^{+[1]}, 1^[1], 0KeV $EC/\beta^+ = 0.04^{[4]}$ $Q_m \neq 16717.84^*$ ⁸Li (α~100%^[1]) $Q_{\beta^-} = 16004.1 KeV^{a}(\beta^-)$ 13585.3 KeV^d, E2^[1] 16609.9 KeVd, M1^[1] 1.513(15)MeV[1],,,2[†][1],0^[1],3030(10)^{[1} ~100%[1] 100%[1] 5.6^b 5.6^b $Q_m = 3121.84^{\circ}$ (a 100%[1]) Decay data from NNDC. Plotting by Chengzhuo Yuan from IHEP 5.57(25)eV^[1] 0+[1],0[1],0 ≤ 0.0073%^[2] >10.2 ⁸Be Qm = 91.84 " 0+[3],0[3],0 (a 100%[1]) ⁴He(stable) ${}^{8}\text{Li}(\beta^{-}){}^{8}\text{Be}$ Q_m = 16.0041 MeV^a $^8\text{Be} \rightarrow {}^4\text{He} + {}^4\text{He} \ \ Q_m = 0.09184 \ MeV^a$ ${}^{8}B(\beta^{+}){}^{8}Be Q_{m} = 17.9799 MeV^{a}$

Decay data from NNDC. Plotting by Chengzhuo Yuan from IHEP

 ${}^{3}H(p,\gamma)^{4}He \ Q_{m} = 19.8139 \ MeV^{\alpha} \qquad {}^{1}H(\alpha,\gamma)^{5}Li \ Q_{m} = -1.9670 \ MeV^{\alpha} \quad {}^{9}B \rightarrow \alpha + {}^{5}Li \ Q_{m} = -1.6894 \ MeV^{\alpha} \qquad {}^{8}Be \rightarrow {}^{4}He + {}^{4}He \ Q_{m} = 91.84 \ KeV^{\alpha} \qquad {}^{9}B \rightarrow p + {}^{8}Be \ Q_{m} = 0.1859 \ MeV^{\alpha} \quad {}^{9}C(\beta^{+})^{9}B \ Q_{m} = 16.4945 \ MeV^{\alpha} \qquad {}^{8}He^{-1}He^$

Input uncertainties of oscillation

Component	Input Uncertainty (%)
Flux	2.2
Baseline (L)	-
Energy per Fission	0.2
Thermal Power (P)	0.5
Fission Fraction	0.6
Mean Cross-Section per Fission	2.0
Detection	1.0
Fiducial volume (2 cm vertex bias)	0.4
IBD Selection cuts	0.2
Muon Veto	-
Proton Number	0.9
Backgrounds	1.0
Geoneutrinos	0.8
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	0.4
Atmospheric neutrinos	0.2
Fast neutrons	0.2
$^{13}C(\alpha,n)^{16}O$	0.1
Accidentals	< 0.1
World reactors	< 0.1

Online Scintillator Internal Radioactivity Investigation System (OSIRIS)

A 20-t detector to monitor radiopurity of LS before and

during filling to the central detector

- ✓ Few days: U/Th (Bi-Po) ~ 1 \times 10⁻¹⁵ g/g (reactor baseline case)
- ✓ 2~3 weeks: U/Th (Bi-Po) ~ 1 \times 10⁻¹⁷ g/g (solar ideal case)
- $\checkmark~$ Other radiopurity can also be measured: $^{14}C,\,^{210}Po$ and ^{85}Kr

Eur.Phys.J.C 81 (2021) 11, 973

Expect to start commissioning in July.

Possible upgrade to Serappis (SEarch for RAre PP-neutrinos In Scintillator): arXiv: 2109.10782

✓ A precision measurement of the flux of solar *pp* neutrinos on the few-percent level