Reactor Antineutrino with the DANSS Detector

Dmitry Svirida for the DANSS Collaboration

CONTRACTOR OF STREET, STREET,

January 16-20, 2023 IAEA Headquarters Vienna, Austria

International Atomic Energy Agency

Technical Meeting on Nuclear Data for Anti-neutrino Spectra and Their Applications

DANSS — Detector of reactor AntiNeutrino based on Solid-state Scintillator

Unique location and movability

- 50 m.w.e. overburden
- 10.9 12.9 m from the core center
- Regular movement every week
 Safety and fine segmentation
- 1 m³ of polystyrene based scintillator strips 10x40x1000 mm³ with Gd coating and WLS fiber readout
- 25 strips in a layer, 100 layers with alternating direction
- Center fiber SiPM (2500 channels)
 Two edge fibers from 50 strips of the same direction PMT (50 channels)
 Powerful shielding
- Multilayer Cu (5 cm) + CHB (8 cm) + Pb (5 cm) + CHB (8 cm) closed passive shielding
- 2-layer µ-veto on 5 sides
 Versatile DAQ

IAEA

Dedicated WFD-based DAQ system

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

JINST 11 (2016) P11011

and Their Applications, January 16-20, 2023

Setting World Records, I

- 6 years of very stable and almost continuous running
- > 6 mln. neutrino events recorded and analyzed till April, 2022 (so far)
- ✓ 3 full fuel campaigns, 4 reactor-OFF periods

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

and Their Applications, January 16-20. 2023

Setting World Records, II

- > 5000 events/per day in the closest position
- > 50:1 signal to noise ratio

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

and Their Applications, January 16-20, 2023

Good statistics in positron spectra

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

and Their Applications, January 16-20, 2023

Sterile Analysis

- ✓ Gaussian CLs method for the exclusion limits, reaches $sin^2 2\theta < 4x10^{-3}$
- RAA+GA best point is deep in the exclusion region. 5σ exclusion already in 2018
- $\boldsymbol{\prime}$ Two Feldman-Cousins allowed regions with close significance more than 2σ
- \checkmark The best point 2.35 σ is not significant enough to claim indication of 4ν

THE RATE

Calibration and Monte Carlo

- Routine calibration, now using median of distributions:
 - SiPM by noise spectra every 30-40 min
 - All photo-sensors by cosmic muons every 2 days
- ✓ Global energy scale is fixed by ¹²B-decay, most similar to e^+ signal: -4.6% to the muon scale
- Good agreement ±0.2% of various calibration sources (except ²²Na)
- Much progress in MC, including individual light yields for each SiPM and PMT

Reactor Power Monitoring

- Dependence on fuel evolution clearly seen
- Various detector positions equalized by toy MC of both the core and the detector
- Single common normalization by 1 month in October, 2016
- Absolute detector efficiency known with accuracy better than 1% during 5.5+ years

Technical Meeting on Nuclear Data for Anti-neutrino Spectra and Their Applications, January 16-20, 2023

IAEA

Dmitry Svirida (KCTEP) for the DANSS Collaboration

e⁺ Spectra for Fraction Intervals

Technical Meeting on Nuclear Data for Anti-neutrino Spectra and Their Applications, January 16-20, 2023

IAEA

Dmitry Svirida (KCTEP) for the DANSS Collaboration

Fractional Slopes for Energy Intervals

Fractional Slopes and Relative IBD Yield

 DANSS results are slightly more sensitive for the fuel evolution, than DB, and slightly closer to H-M predictions, yet almost agree with both

Cross-section Ratio $\sigma_{235}/\sigma_{239}$

$$N = \alpha \cdot (\sigma_8 f_8 + \sigma_1 f_1 + \sigma_5 f_5 + \sigma_9 f_9) \quad (1)$$

$$\frac{dN}{df_9} = \alpha \cdot \left(\sigma_8 \frac{df_8}{df_9} + \sigma_1 \frac{df_1}{df_9} + \sigma_5 \frac{df_5}{df_9} + \sigma_9\right)$$
(2)

$$Sl = \frac{\frac{dN}{df_{9}}}{N} = \frac{\frac{\sigma_{8}}{\sigma_{9}}\frac{df_{8}}{df_{9}} + \frac{\sigma_{1}}{\sigma_{9}}\frac{df_{1}}{df_{9}} + \frac{\sigma_{5}}{\sigma_{9}}\frac{df_{5}}{df_{9}} + 1}{\frac{\sigma_{8}}{\sigma_{9}}f_{8} + \frac{\sigma_{1}}{\sigma_{9}}f_{1} + \frac{\sigma_{5}}{\sigma_{9}}f_{5} + f_{9}}$$
(3)

$$\frac{\sigma_5}{\sigma_9} = -\frac{\frac{\sigma_8}{\sigma_9}(Sl \cdot f_8 - \frac{df_8}{df_9}) + \frac{\sigma_1}{\sigma_9}(Sl \cdot f_1 - \frac{df_1}{df_9}) + (Sl \cdot f_9 - 1)}{Sl \cdot f_5 - \frac{df_5}{df_9}}$$

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

and Their Applications, January 16-20. 2023

- N IBD yield, per fission
- \succ Take derivative with respect to f_{g}

 dN/df_9 – slope of IBD yield in DB definition

Divide (2) by (1)

 $(dN/df_{9})/N-$ relative slope of IBD yield in DANSS definition

 \succ Express σ_{s}/σ_{g} from (3)

Unlike DB, $\sigma_{_5}$ and $\sigma_{_9}$ do not have to be calculated separately

Fractions vs F₂₃₉ and Derivatives

Campaigns 4-7 seem to be very similar

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

and Their Applications, January 16-20, 2023

IAEA

- Campaign 8 is taken only partly, resulting in slightly different numbers
- The difference between 4-8 and 4-7 is taken as the uncertainty estimate

Cross-section Ratio – Numbers

Meeting on Nuclear Data for Anti-neutrino Spectra

Fractions f_i taken at $f_9=0.3$, as in DB Derivatives df_i/df_9 are slopes in linear fits

$S/ = -0.3998 \pm 0.0246$

Other cross-section ratios are from DB Phys.Rev.Lett. 120 (2018) 2, 022503

	DB^{a}	Summation	$H-M^b$
$\overline{\sigma}_f(10^{-43} \mathrm{cm}^2)$	5.9 ± 0.13	6.11	$6.22 {\pm} 0.14$
$\frac{d\sigma_f}{dF_{239}}(10^{-43} \text{cm}^2)$	-1.86 ± 0.18	-2.05	$-2.46 {\pm} 0.06$
$\sigma_5 \ (10^{-43} {\rm cm}^2)$	$6.17{\pm}~0.17$	6.49	$6.69{\pm}0.15$
$\sigma_9 \; (10^{-43} {\rm cm}^2)$	$4.27{\pm}~0.26$	4.49	$4.36 {\pm} 0.11$
$\sigma_{\rm s} \; (10^{-43} {\rm cm}^2)$	$10.1 {\pm} 1.0$	10.2	$10.1 {\pm} 1.0$
$\sigma_4~(10^{-43} { m cm}^2)$	$6.04{\pm}0.6$	6.4	$6.04{\pm}0.6$
σ_5/σ_9	$1.445 {\pm} 0.097$	1.445	$1.53{\pm}~0.05$

 $\sigma_{_{8}}/\sigma_{_{9}}$ =2.32±0.24 $\sigma_{_{1}}/\sigma_{_{9}}$ =1.39±0.14

- All errors are included into the result
 Contributions from small fractions are not negligible
- Errors are smaller due to direct result
- DB slope gives good agreement
- DANSS result is closer to H-M and on the opposite side from DB

The Bump: Experiment vs MC

First Steps towards Absolute Counts

IAEA

and Their Applications, January 16-20, 2023

First Steps to Absolute Counts

Naturally, DANSS results are above KI predictions but within experimental uncertainties Not very informative

Technical Meeting on Nuclear Data for Anti-neutrino Spectra

and Their Applications, January 16-20. 2023

Dig . 2019

IAEA

Taking Data – Preparing Upgrade

One but significant drawback:

- Energy resolution 34% @ 1 MeV
- 18.9 (SiPM) + 15.3 (PMT) = 34.2 p.e./MeV, light collection nonuniformity 8% r.m.s.
- Other inhomogeneities, like fluctuations of Gd coating thickness
- Limits sensitivity to the sterile neutrino, though much is already achieved ! Upgrade goals and expectations:
- $\checkmark~$ Improve energy resolution to 12% @ 1MeV expand sensitivity to higher Δm^2
- Increase sensitive volume nearly x2 higher counting rates
- Longitudinal coordinate from timing real 3D picture
- Probe Neutrino-4 and BEST results, already in 1.5 years of running

Technical Meeting on Nuclear Data for Anti-neutrino Spectra and Their Applications, January 16-20, 2023

ΙΑΕΑ

Summary and Conclusions

- DANSS already recorded more tha 6 mln events and steadily continue taking data
- \checkmark RAA+GA best point is deep in the exclusion region. 5 σ exclusion already in 2018
- \checkmark The FC best is not significant enough to claim indication of 4ν
- Several DANSS results indicate better agreement with H-M model than those from other experiments:
 - Reactor power monitoring is purely statistical after H-M correction
 - Fractional slopes and relative IBD yield are slightly more sensitive for the fuel evolution than DB, and closer to H-M predictions
 - Cross-section ratio σ_s/σ_9 coincide with H-M prediction, unlike DB
 - The bump, if any, is twice less pronounced than should be even with DANSS energy resolution
 - Absolute counts agree with H-M: average 0.98 ± 0.04 (very preliminary)
- Upgrade is under preparation with the main goal of 12%@1 MeV energy resolution
 New interesting things are coming !

Thank you for your attention !

