

NEOS-II Status Report

Sunny Seo IBS On behalf of the NEOS collaboration

IAEA Technical Meeting at Vienna

Jan. 16-20, 2023

NEOS-II Goals & Achievements:

1. understanding of reactor neutrino **anomalies** \rightarrow finalizing the analysis

2. Search for sterile neutrinos \rightarrow close to the preliminary result

Challenges:

- 1. Decrease of light yield during data-taking
- 2. Small group consisting of only domestic institutions

Opportunities:

- 1. NEOS-II detector has one of the **best energy resolutions** among VSBL exp.
- 2. High statistics (commercial reactor)
- 3. Low background (good overburden: ~20 mwe)
- 4. Excellent PSD: S/B = 29
- 5. Full Fuel cycle data
- 6. Beyond NEOS-II?

NEOS-I Results in 2017

NEOS 180 (46) days reactor-on(off)data

• 1977 (85) IBD/day during on (off) period; S/B ~ 22

3

NEOS-I Results in 2017

NEOS 180 (46) days reactor-on(off)data

PRL 118, 121802 (2017)

- RAA best fit is excluded at ~4 σ .
- Limited by "systematic" uncertainty (model, energy scale).

** Daya Bay data was used as a reference model (3v osc.).

NEOS-I + RENO Results in 2022

NEOS-I & RENO Joint Analysis

Phys. Rev. D 105, L111101 (2022)]

- → The NEOS-I & RENO result is improved compared to the NEOS-I & DYB result.
- The best fit falls in RAA 95% allowed region.

> NEOS+RENO best fit: (2.41 eV², 0.08) with $\chi^2(3\nu) - \chi^2(4\nu) = 8.4$, p-value = 8.2%

** RENO data was used as a reference model (3v osc.).

NEOS-II (Sept. 2018 – Oct. 2020)

- Refurbished detector from NEOS-I.
- Took ~388 live days of data (full fuel cycle) + 2 OFF periods (45+67 days)
- Time evolution of reactor v flux/shape; spectral decomposition
- Rate+Shape analysis on (3+1)v oscillation

NEOS-II Collaboration

Currently, total **20** members from **7** institutions

- Chung-Ang University (CAU)
- Institute for Basic Science (IBS)
- Korea Atomic Energy Research Institute (KAERI)
- Kyungpook National University (KNU)
- Korea University (KU)
- Sejong University (SJU)
- Sungkyunkwan University (SKKU)

NEOS Site

Hanbit-5 reactor and tendon gallery

NEOS Detector

NEOS-II detector is refurbished from NEOS-I, almost identical.

- Homogeneous LS target — 1008 L volume
 - (R 51.5, L 121) cm 3% PPO
- LAB+UG-F (9:1)
- 0.03% bis-MSB
- 0.5% Gd loaded for high neutron capture efficiency
- 38 8" PMT in mineral oil buffer
- Shieldings
 - 10 cm B-PE (n), 10 cm Pb (γ)
 - active muon counter
- Data AcQuisition
 - 500 MS/s FADC (waveform)
 - 62.5 MS/s ADC (μ veto)
- Source calibration through chimney

* Newly produced Gd-LS w/ the same recipe

* 9/15 muon counters are newly prepared.

NEOS-II Preparation (July~Sept. 2018)

Sunny Seo, IBS

Challenge

Continuous decrease of light yield during data-taking

- ~46% decrease is observed at end of data-taking
- Light yield decrease is independent on energy.

is observed, too.

GdLS Sample from Target in 2019

* Precipitation was observed at the wall and bottom.

Sample taken in 2019.03.05

* Precipitation contains Gd compound.

Possible causes of LY decrease:
 Inflow of humidity/oxygen to GdLS??
 High concentration of Gd??

Coping w/ LY Decrease

1. Charge (pe) correction

- → Reference: ²⁰⁸Tl peak in data
- → This is always done regardless of LY decrease.

2. Energy resolution correction

→ Corrected to the worst energy resolution (7.3%)

3. Change IBD selection cut values

ightarrow To keep the same detection efficiency

NEOS-II Initial & Latest Data Sets

Delayed Time

Prompt Vs. Delayed Energy

→ The latest data set (Period 9) looks fine!

Except for ΔT increase & worse E resolution

Pulse Shape Discrimination

Energy Calibration (I)

Bi-weekly taking of source data at target center

Energy Calibration (II)

- Fully deposited γ events are modeled by a Gaussian.
- Not fully deposited γ events are fitted by a Crystal ball.
 (There are many escaping γs due to the small size of the detector.)

Source Data & MC

Source Data & MC match very well!

X [cm] 21

2-D Calibration

Data and MC match well, including escaping γs.

22

Source Data Vs. MC

NEOS-II MC Improvement

- NEOS simulation is based on <u>Geant4</u>.
 → full simulation including electronics simulation
- An update was made for NEOS-II.
- n-Gd MC update:
 GLG4Sim → new model (by Okayama Univ.)

ANNRI-Gd model PTEP 2019, 023D01

PMT Charge Correction

To correct PMT gain differences & its drift over time

where $\langle Q \rangle_j$ is the averaged charge value in group *j*, and Q_i is the mean charge value for *i* th PMT.

⁶⁰Co source data at the center position

Energy Reconstruction (I)

Energy Reconstruction (II)

$$Q = S(t) \cdot U(A_z) \cdot \sum_{i}^{38} q_i \qquad S(t) = \frac{Q(^{208}\text{Tl}, 0)}{Q(^{208}\text{Tl}, t)}$$

²⁰⁸Tl is used as a reference for the stability correction.

Uniformity Correction

Energy Reconstruction (III)

28

Energy Resolution

Single Event Spectrum

• Muon rate: ~260 Hz

Sunny Seo, IBS

About 80% single events survive after muon veto cuts

IBD Selection

PSD Cut: CNN

- CNN + waveform (FFT)
- Low energy background reduced by up to 40% compared to Q_tail/Q_total method.

IBD Candidates & Background

NEOS-II Background Compositions

Reactor-OFF 2 (67 live days)

Reactor-OFF 1 (45 live days)

IBD Prompt Spectrum

9 Groups of Data

Data is grouped into 9 to observe the evolution of reactor v flux/shape.

 IBD selection cuts are applied to each group of data to keep the same detection efficiency.

Chi2 Formula

$$S_{ij} = (1 + \alpha) \left(1 + \eta \sigma_{ij}^{\eta} \right) \prod_{m}^{3} \left(1 + \xi_{m} \sigma_{im}^{\xi} \right)$$

$$\times \frac{N_{p}}{4\pi L^{2}} \epsilon_{ij}^{d} T_{j}^{\text{on}} \sum_{k}^{N_{iso}} F_{jk} X_{k}^{eq} y_{ik}$$

$$F_{jk} = f_{jk} \frac{P_{th}}{\sum_{l} f_{l} E_{l}}$$

$$X_{k}^{eq} : \text{ off-equilibrium correction}$$

$$y_{ik} = \sigma_{i}(E_{\nu}) \phi_{ik}(E_{\nu})$$

IBD Yields

IBD Yield Ratio

KI (2021) model:

V. Kopeikin et al. "Reevaluating reactor antineutrino spectra with new measurements of the ratio between 235 U and 239 Pu β spectra"

PRD 104, L071301 (2021)

NEOS-II: y₂₃₅/y₂₃₉ = 1.36 +/- 0.06

\rightarrow NEOS-II result has a tension with the Huber model.

Spectral Decomposition

$$\chi^{235}$$
U & Σ Pu $\chi^{2} = 236/217$

 \rightarrow The "5 MeV bump" is seen in ²³⁵U but is not conclusive for Pu.

Sterile Neutrino Search Sensitivity

- Rate+Shape analysis is on-going.
- Slightly better sensitivity due to statistical improvement.
- A preliminary result is expected soon.

Summary

NEOS-II successfully measured prompt E spectrum from reactor v using 388 (112) days of reactor-on (off) data.

NEOS-II is one of the two VSBL reactor experiments which took data for a full fuel cycle of a commercial reactor.

Light Yield decrease was well handled. Its effect is marginal.

□ IBD Yields & spectral decomposition analysis is being finalized.

• Sterile neutrino search results would be expected soon.

□ There might be a new opportunity beyond NEOS-II.