NUCLEUS & CRAB Experiments

Technical Meeting on Nuclear Data Needs for Antineutrino Spectra Applications

IAEA Headquater, Vienna, 16/01/2023

on behalf of the NUCLEUS / CRAB collaborations

Coherent elastic neutrino nucleus scattering

Cross-section x 100-1000 with respect to other ν detection channels \rightarrow detector miniaturization

Same outgoing υ

Coherent elastic neutrino nucleus scattering

Same outgoing υ

Recoiling nucleus

NUCLEUS Signal

Nucleus recoils as a solid body

→ O(100 eV) energy deposition: faint signal
→ Hard to discriminate against backgrounds
→ Not yet observed for reactor neutrinos !

NUCLEUS Collaboration

Reactor Antineutrinos Source

Cea

CEvNS @ reactor anti-neutrinos

- $E_v < 8 \text{ MeV} \rightarrow \text{fully coherent regime}$
- Induced nuclear recoil in sub-keV range
- Energy threshold and low background level are key parameters
- CEvNS of reactor anti-neutrinos has not been observed yet

Deployement Strategy

Blank Assembly – Background Validation

Neutrino detection + First physics run

Cryostat Infrastructure (BlueFors)

mK Cryostat BlueFors LD400

Cryogenic detectors

NULCEUS Neutrino Targets

Target detectors

- CaWO₄ and Al₂O₃ crystals readout with W-TES
- ✓ Based on CRESST technology
- ✓ Al_2O_3 prototype with threshold $E_{th} = (19.7 \pm 0.8) eV_{nr}$

W-TES

Phys. Rev. D 96, 022009 (2017)

Multi-target approach

- CaWO₄: Background + CEvNS
- Al₂O₃ : Essentially backgroundonly measurement

CaWO4 crystals operated at 15 mK

✓ 18 CaWO₄ crystals equipped with W-TES have been tested: sensitive TES has low transition temperature due to $\Delta T = \Delta E/C(T)$

Target detectors enclosed in 4π active vetos

Target crystals:

Two 3x3 arrays with a total mass of $6g (CaWO_4) + 4g (Al_2O_3)$

Inner veto: TES-instrumented holder

to reject surface backgrounds and holder-related events

Germanium outer veto for active γ/n background rejection

Multi-layer shielding background rejection

• Compact passive shielding with footprint of $\sim 1 \text{ m}^2$

Muon Veto

Muon Veto installed at TUM (2022)

Passive Shielding

- Multiple shielding layers in and outside of the cryostat:
 - <u>5 cm lead</u>
 - 20 cm 5%-borated polyethylene
 - 4 cm boron carbide

Passive Shielding installed at TUM (2022)

Background forecast: O(100 counts/ (keV kg d))

The Critical "Excess" at very low energy (<100eV)

Deployment at the Chooz Nuclear Power Station

Thierry Lasserre - IAEA 2023

Very Near Site at Chooz Nuclear Power Plant

Deployment at the Chooz Nuclear Power Station

VNS room almost ready – Integration in 2024

Deployment at the Chooz Nuclear Power Station

VNS room almost ready – Integration in 2024

Target Detector Calibration

In-situ LED Calibration • LED bursts with N photons of E_{γ} = 4.9 eV

- Calibration based on Poissonian photon statistics
- Cross-calibration with new X-ray fluorescence source planned

Calibrated Recoils for Accurate Bolometry

XRF Calibration

- Commonly used:
 - ⁵⁵Fe with lines at 5.9 keV and 6.4 keV
 - Heater pulses of different amplitudes used to extrapolate
 - cosmogenic activation of ¹⁸²W with lines at 2.6 keV and 11.3 keV
- LED calibration system
- X-ray fluorescence sources with broad line spectrum between 677 eV and 6.4 keV

K. von Mirbach, master thesis (TUM, 2021)

Schedule

NUCLEUS Physics Reach

Phase I: NUCLEUS-10g - 2024-2025

 $9 \times CaWO_4 + 9 \times Al_2O_3$

S = 150 counts / year

EXPERIMENT

nu/cleus

Cez

B < 300 counts / year

Phase II : NUCLEUS-1kg – 2026 – SM & BSM

 $S > 10^{3-4}$ counts / year

The CRAB Calibration & Collaboration

BS

The CRAB Concept Calibrated Recoils for Accurate Bolometry

Cez

The CRAB Method for Different Targets

	Target nucleus (A)			Compound nucleus (A+1)				
Cryo detector	lsotope	Y _{ab} [%]	$\sigma_{n,\gamma}$ [barn]	I_{γ}^{s} [%]	S _n [keV]	Recoil [eV]	FoM	
CaWO ₄	¹⁸² W	26.5	20.32	13.94	6191	112.5	7506	•
	¹⁸³ W	14.3	9.87	5.83	7411	160.3	823	
	¹⁸⁶ W	28.4	37.89	0.26	5467	85.8	281	
Ge	⁷⁰ Ge	20.5	3.05	1.95	7416	416.2	122	
	⁷⁴ Ge	36.5	0.53	2.83	6506	303.2	54	
Al ₂ O ₃	²⁷ Al	100	0.23	26.80	7725	1145	616	
Si	²⁸ Si	92.2	0.18	2.17	8473	1330	36	

Proof of Concept at TUM: simulation

	Target nucleus	5 (A)	Compound nucleus (A+1)			
Isotope	Y _{ab} [%]	$\sigma_{n,\gamma}$ [barn]	I^{s}_{γ} [%]	S _n [keV]	Recoil [eV]	
¹⁸² W	26.50	20.32	13.94	6191	112.5	
²⁷ Al	100	0.23	26.81	7725	1145	

Cea

Proof of Concept at TUM – few days of data

Two data sets were acquired:

- Background data (lifetime 18.9 h)
- ²⁵²Cf source data (lifetime 40.2 h).

Proof of Concept at TUM - results

FIG. 2. Energy spectrum recorded during the *source* measurement. The two peaks from the 55 Fe source are used to set the energy scale of the detector (see text). The inset shows the distribution of filtered baselines after quality cuts.

arXiv:2211.03631

FIG. 3. Energy spectra (from 60 to 300 eV) measured by the NUCLEUS detector for the *source* and *background* (scaled to source exposure) measurements. The error bars represent the Poissonian uncertainties. The red solid and blue dashed lines illustrate the best fit with and without the Gaussian contribution, respectively.

Proof of Concept at TUM – results/simulation

• Recoil spectrum measured with the neutron source in place (black points)

- Expected spectrum built from the measured ambient background and the simulation (red line)
- The simulation (red) is fitted on the data in the 60 – 300 eV range with free normalization, energy scale, and energy resolution

Final Calibration at Vienna TRIGA-Mark-II reactor

Final Calibration at Vienna TRIGA-Mark-II reactor

- Full GEANT4 simulation of the exp. setup coupled with FIFRELIN
- Run: 3.4 days with 270 n/cm²/s
- Detector performance and background as taken in surface lab (*Phys. Rev. D96, 022009 (2017*))
- Energy resolution σ = 5eV

CRAB as a facility for the community

Thierry Lasserre - IAEA 2023

Improvement using gamma-tagging

Improvement using gamma-tagging

³³ g Ge detector + [7.2-7.6] MeV coincidence

CRAB Timeline

