The STEREO Experiment

Technical Meeting on Nuclear Data Needs for Antineutrino Spectra Applications

David Lhuillier

Vienna, Jan 2023

Loris Scola

Reactor Antineutrino Anomalies

Reactor Antineutrino Anomaly (RAA)

~6% global rate deficit at short-baseline w.r.t.

``5 MeV Bump'' ~**10% spectral disortion** w.r.t. Huber-Mueller prediction.

New physics or prediction bias?

Nature Physics 16, pp. 558–564 (2020)

STEREO main goals

- **Pure** contribution of ²³⁵U to the reactor anomalies.
- □ Test of sterile hypothesis, with a modelindependent oscillation analysis.
- **C** Reference neutrino spectrum of the ²³⁵U fission
 - Precise absolute rate.
 - Precise spectrum shape.

- Antineutrino source : research reactor of Institut Laue-Langevin (ILL), Grenoble – France:
 - HEU fuel (93% enriched)
 - Compact core (≤1 m)
 - **P**_{th} = 58 MW_{th}
- > Detector:
 - Very short-baseline (9-11m)
 - Segmented with 6 identical cells.
 - % level control of the detector response.

Neutrino detection

Inverse beta-decay (IBD): $\ ar{
u}_e + p \ o e^+ + n$

 $E_{\overline{\nu}_e} = E_{e^+} - 0.782$ [MeV]

- 6 identical Target cells, surrounded by a crown of "γ-catcher" cells, all filled with Gd-loaded liquid scintillator.
- Heavy passive shielding (Pb, PE, B₄C) mitigate external gamma and neutron background.
- Active water Cherenkov muon veto.

Cosmic rays induced correlated background

Prompt-delayed correlated background induced by spallation neutron(s)

Tail charge - Qtail

Total charge - Qtot

5

- ➢ Key extra background reduction :
 - Attenuation of the flux of cosmic rays by the water channel
 - Pulse Shape Discrimination (PSD) of the delayed signal
- Valuable heritage from Double Chooz and Nucifer experiment for the chemistry of liquid scintillators and background rejection techniques.

Onsite installation

Stereo detector

Inner detector being equipped with its photomultipliers

•

•

٠

٠

•

Detector response

Stereo long paper: <u>Phys. Rev. D 102 (2020) 5, 052002</u>

10

Calibration – radioactive sources

γ-ray and neutron sources regularly deployed inside and around the target volume: ⁶⁸Ge, ¹³⁷Cs, ⁵⁴Mn, ⁶⁵Zn, ⁶⁰Co, ⁴²K, ²⁴Na, ²⁴¹Am-⁹Be

Calibration – radioactive sources

Calibration - Cosmic rays

Known signals induced quasi-uniformly in the whole detector volume:

- Capture of stopping μ⁻ on ¹²C nuclei in the LS produces unstable ¹²B
 → continuous β⁻ spectrum with 13.37 MeV end-point.
- Spallation neutrons can be captured on H atoms of the liquid scintillator, producing 2.2 MeV γ-ray.

Calibration – ¹²B β –spectrum

- Produced by the capture of atmospheric muons on carbon nuclei in the liquid scintillator
- Complementary to calibration sources: quasi-homogeneous distribution of vertices & continuous spectrum

Simultaneous fit of all residuals

Very general approach, using various polynomial function or Kernel Density Estimation

- \rightarrow Stringent constraints put on the energy scale:
 - Contained in a ±1% band at the cell level.
 - Contained in a $\pm 1\%/\sqrt{6}$ band at the target level.

The potential systematic distortions induced on the antineutrino spectrum remain subdominant with respect to the statistical fluctuations.

Time stability

Slow chemical kinetics are unavoidable in the liquid scintillators. Valuable heritage of Double Chooz, which developed Gd-doped liquids stable on a multi-year scale

Neutron detection efficiency

The **n-Gd signal** consists in a high energy γ -cascade in a small detector \rightarrow sensitivity to energy leakages and accurate knowledge of the Gd deexcitation.

- Extensive studies with an Am-Be neutron source
- Unprecedented datasimulation agreement for such a small detector is achieved.
- 0.7% uncertainty on the n detection efficiency.
- Significant improvement from the FIFRELIN code

FIFRELIN

- Detailed prediction of the ^{156,158}Gd γ-cascades with e-conversion process, γ angular correlations, ...
- Significant improvement with respect to previous GEANT4 simulations.
- Unexpected application to the calibration of bolometers, of primary interest for CEvNS measurements (T. Lasserre's talk).

STEREO results

Oscillation analysis: <u>Phys. Rev. D 102 (2020) 5, 052002</u> Absolute normalization: <u>Phys. Rev. Lett. 125 (2020) 20, 201801</u> Spectrum shape analysis: <u>J. Phys. G 48 (2021) 7, 075107</u>

Final results: Nature 613 (2023) 7943, 257-261

Public access: https://rdcu.be/c3dsz

2 years of high quality data

²⁷⁴ days-ON (7 reactor cycles) + 520 days-OFF

Neutrino Signal Extraction

- PSD spectrum of reactor-ON and reactor-OFF data.
- Accurate model of correlated background during reactor ON periods:
 - Demonstrated high stability of the PSD spectrum shape
 - Dependence on Patmos absorbed by a free normalization parameter "a"
 - Interleaved ON-OFF periods
- Accidental background measured online
- Gaussian fit to extract the neutrino signal on top of the background model.

Signal-to-background ratio of order 1 ($\pm 2.5 \sigma$ around neutrino peak)

Independent correction of P_{atmos} effect allows to check reactor-induced background

Potential few-% contribution at low energy → included as 100% systematic uncertainty

Stability of the detected spectra

- A spectrum is measured for each reactor cycle.
- The background is subtracted using OFF periods contiguous to the cycle.

 All spectra are found statistically compatible with each other.

No sterile neutrino signal

Oscillation analysis

Comparison between the 6 identical cells

$$\chi^2(\phi,\vec{\alpha},\sin^2(2\theta_{ee}),\Delta m^2_{41}) =$$

Oscillation analysis

Prediction-free

 $\chi^2(\phi,\vec{\alpha},\sin^2(2\theta_{ee}),\Delta m^2_{41}) =$

Rejection of the sterile neutrino hypothesis

- Non-standard $\Delta \chi^2$ distributions from MC pseudo-experiments.
- 2D Feldman-Cousins and CLs approaches yield compatible results.
- No-oscillation hypothesis not rejected (p-value = 0.52).
- RAA best fit point excluded at ~4σ level / Neutrino-4 best fit point excluded at ~3.3σ level.

Sterile neutrino hypothesis disfavored with high confidence level.

All relevant data available on <u>HEPData</u>.

A smart measurement for a "no brane" result

Reference neutrino spectrum of ²³⁵U fission

Correcting all detection effects

Fit of the spectrum $\Phi(\mathsf{E}_\nu)$ in true energy space

... through the response matrix of the detector ...

... to the data in reconstructed energy space

Tikhonov-like approach

Minimization of a regularized χ^2 :

.

$$\chi^{2}(\Phi) = (\vec{D} - [R] \cdot \vec{\Phi}) V_{\Phi}^{-1} (\vec{D} - [R] \cdot \vec{\Phi}) + \lambda * \left| |\Phi| \right|_{M_{HM}}^{2}$$

Regularization term

 $\sum_{i} \left(\frac{\Phi_{i+1}}{\Phi_{i+1}^{HM}} - \frac{\Phi_{i}}{\Phi_{i}^{HM}} \right)^{2}$: penalty term on the bin-to-bin fluctuations, with Φ^{HM} a **prior shape** (here Huber ²³⁵U prediction).

λ ``small'': unphysical large fluctuations, no correlations

λ ``high'' : very smooth, hig correlations

Reference ²³⁵U antineutrino spectrum

- All relevant data available for the community on <u>HEPData</u>:
 - Spectrum in $\mathsf{E}_{\mathsf{true}}$ space Φ
 - Covariance matrix V_{Φ}^{-1}
 - Filter matrix A_c (unbiased comparison with a model)

Ratio to Huber-Mueller prediction confirms deficit & shape distorsion for pure ²³⁵U

Confirming rate deficit of ²³⁵U neutrino rate

 Reported deficit wrt. Huber predicted neutrino rate [2.375MeV, 7.875MeV]:

```
(5.5 \pm 2.1 [stat + syst])\%
```

- Most accurate measurement of ²³⁵U fission yield.
- In agreement with world average $(4.9 \pm 1.2 [stat + syst])\%$
- ²³⁵U deficit deduced from power reactors measurements is slightly larger, but within uncertainties.
- ²³⁵U is a main contributor to the Reactor Anomaly.

Confirming shape distortion

Improvement of the agreement with data leading to a **4.6** σ significance of the existence of a "bump".

Fit of a gaussian distortion through the filter matrix:

$$Pred(E) = HM(E) \cdot \alpha \left(1 + A \cdot \exp \frac{(E - \mu)^2}{2\sigma^2}\right)$$

$$\chi^2 = (\Phi - A_c \cdot Pred)^T V_{\Phi}^{-1} (\Phi - A_c \cdot Pred)$$

Amplitude:	A = 15 ± 5%
Mean:	μ = 5.55 ± 0.09 MeV
Sigma:	σ = 0.31 ± 0.14

Global analysis – STEREO-PROSPECT

Updated joint unfolded spectrum with full STEREO data set

R. Rogly's PhD thesis

- \succ 4.7 σ bump, for an overall statistics of **150k** antineutrinos events
- > Similar bump parameters: $A = (13.5 \pm 3.3)\%$ $\mu = (5.583 \pm 0.101)$ MeV $\sigma = (0.369 \pm 0.116)$ MeV
- Robust result, combining >two independent HEU experiments.
- STEREO-PROSPECT-DB joint fit to published

35

Projected in the same E_{rec} space the

Phys. Rev. Lett. 128 (2022) 8, 081802

Benchmark for nuclear data

<u>Shift of paradigm</u>: model independent and accurate neutrino measurements constrains the nuclear data.

- In the "summation" approach the agreement with the neutrino data is a test of the quality of fission yields and β⁻ decay spectra of fission products.
- Convergent hints toward the dominant role of the correction of the Pandemonium effect in β⁻ spectra:
 - Steady progress of the TAGS measurements makes the prediction converge on the observed deficit.
 - Phenomenological, 1 parameter, model of Gamow-Teller decay strength applied to all fission products achieves an unprecedented agreement with measured rate and shape.

Biases of the Huber-Mueller Model - Rate

HEU, pure 235U, measurements confirm the global picture of 235U being mainly responsible for the Reactor Antineutrino Anomaly.

Absolute normalizations of the 235U and 239Pu fission β -spectra, on which is anchored the HM model, were indeed independent.

The rate of e-conversion from ¹⁹⁷Au(n,e-)¹⁹⁸Au was initially used for both isotopes. Then another 235U run was taken and considered as the reference, normalized with the ²⁰⁷Pb(n, e⁻)²⁰⁸Pb process...

Biases of the Huber-Mueller Model - Shape

A similar bump in the β -spectra would easily propagate in the converted neutrino spectra

- A slight kink in the energy scale can induce the observed shape distortion
- Neutrino experiment have worked hard to make this systematic uncertainty negligible.
- Could we have a similar effect in the control of the amplitude of the magnetic field used to analyze the β fission spectra? Magnet power supply, range of Hall probe, or fancy nuclear effects ?

ILL research reactor (Grenoble, France)

Conclusions

STEREO has performed a complete study of the reactor antineutrino anomalies with the pure ²³⁵U fission spectrum of the ILL reactor

> Sterile neutrino hypothesis strongly disfavored.

- > 5.5 ± 2.1 % rate deficit observed pointing to a biased normalization of the ²³⁵U fission β -spectrum used by the HM prediction as the main origin of the RAA.
- > New reference spectrum shape, reinforced by the STEREO-PROSPECT joint analysis. Local distortion measured around 5.5 MeV with 4.7σ significance.
- Unbiased unfolding procedure provides a new benchmark for the quality of nuclear data.

