

Reactor Antineutrino Flux and Spectrum Measurement at Daya Bay

Fengpeng An Sun Yat-sen University On behalf of the Daya Bay Collaboration

16th Jan, 2023

Technical Meeting on Nuclear Data Needs for Antineutrino Spectra Applications, IAEA

Outline

- Daya Bay Reactor Neutrino Experiment
- Reactor antineutrino flux evolution of Daya Bay experiment
- Extraction of isotope antineutrino spectra at Daya Bay
- Joint analysis of Daya Bay experiment and PROSPECT experiment

Daya Bay Reactor Neutrino Experiment

Designed to measure θ_{13} , using antineutrinos produced by reactors.

6 commercial pressurized-water reactors, each with 2.9 GW thermal power.

8 identically designed Antineutrino Detectors (ADs), in 3 Experimental Halls (EHs).

Starting from Dec 24, 2011, discovered the non-zero θ_{13} mixing angle in 2012.

Finished data taking on Dec 12, 2020

Daya Bay

The Daya Bay Collaboration

Asia (24)

Beijing Normal Univ., CGNPG, CIAE, Congqing Univ., Dongguan Univ. Tech., ECUST, GXU, IHEP, Nanjing Univ., Nankai Univ., NCEPU, NUDT, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan (Sun Yat-sen) Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

~200 Collaborators, 41 Institutions

Europe (2)

Charles Univ., JINR Dubna North America (15)

Brookhaven Natl Lab, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Siena College, Temple University, UC Berkeley, Univ. of Cincinnati, Univ. of California Irvine, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale 4

Reactor antineutrinos at Daya Bay

Six reactors with total thermal power of 17.4 GW, producing ~3.5x10²¹ electron antineutrinos per second

Antineutrinos are mainly produced by the beta decay of fission products of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu.

Antineutrino detection at Daya Bay

• Detect inverse β-decay reaction (IBD):

Brief History of Onsite Operation

- Detector commissioning on 15 August 2011
- Collection of physics data began on 24 Dec 2011
- Collection of physics data ended on 12 Dec 2020
- Decommissioning: 12 Dec 2020 31 Aug 2021

Data Acquisition

• Operational statistics:

• Three physics runs:

Configuration	EH1	EH2	EH3	Start date – End date	Duration (Days)
6-AD	2	1	3	24 Dec 2011 – 28 July 2012	217
8-AD	2	2	4	19 Oct 2012 – 20 Dec 2016	1524
7-AD	1	2	4	26 Jan 2017 – 12 Dec 2020	1417
Total					3158

• Data available for analyses: ~2700 days

Improvements

• Statistics of nGd data:

Year	Calendar days	EH1	EH2	EH3	Total IBD's
2018 (PRL 121, 241805)	1958	1,794,417	1,673,907	495,421	3,963,745
2022 (arXiv:2211.14988)	3158	2,236,810	2,544,894	764,414	5,546,118

• Improved energy calibration as well as background determination and mitigation

Reactor antineutrino flux measurements

Daya Bay measurement to model (Huber-Mueller)

- 621 days analysis : data/prediction = 0.946±0.020(exp.)
- 1230 days analysis : data/prediction = 0.952±0.014(exp.)

Agrees with other experiments: Global deficit = $0.945 \pm 0.007(exp.) \pm 0.023(model)$

> Reactor Antineutrino Anomaly(RAA): deviation of data/prediction from unity

Reactor antineutrino spectrum measurements

The spectral shape disagrees with the Huber-Mueller model at 5.3σ an excess in 4~6 MeV range is observed with a 6.2 σ discrepancy

Finely binned antineutrino spectrum measurement at Daya Bay

Fine structures may be important for experiments with high resolution
Fine structures are interesting research topic for nuclear physics

1958 days

- The Daya Bay measurement is not sensitive to fine structures calculated from current nuclear databases because of the finite energy resolution.
- No evidence of fine structures in reactor antineutrino spectrum with Daya Bay measurement is found.

Chinese Phys. C 45 073001 (2021)

Motivation

Fission fraction evolution of Daya Bay reactors

Effective fission fraction of ²³⁹Pu of near sites

Stacking all refueling cycles

Effective fission fraction (EFF): detector "observed" fission fraction

$$F_{i}(t) = \sum_{r=1}^{6} \frac{W_{\text{th},r}(t)\bar{p}_{r}f_{i,r}(t)}{L_{r}^{2}\bar{E}_{r}(t)} / \sum_{r=1}^{6} \frac{W_{\text{th},r}(t)\bar{p}_{r}}{L_{r}^{2}\bar{E}_{r}(t)}.$$

$$\overset{235}{\cup} : 50\% \sim 65\%$$

$$\overset{239}{\sim} 24\% \sim 35\%$$

Reactor antineutrino flux evolution:1230 days

As the fission fraction evolves, the antineutrino flux also evolves

• The data prefer ²³⁵U to be mainly responsible for the RAA • Disfavor all isotopes with equal deficit (2.8 σ) or ²³⁹Pu only hypothesis (3.2 σ) 14

Reactor antineutrino flux evolution: 1958 days

- The measured average flux and their evolution with the ²³⁹Pu isotopic fraction, are inconsistent with the the Huber-Mueller model prediction.
- The SM2018^{*} model agrees with the average flux and its evolution
 - * M. Estienne *et al.*, Phys. Rev. Lett. 123, 022502 (2019)

Reactor antineutrino flux evolution: 1958 days

Both the HM model and the SM2018 fails to describe the energy spectrum evolution.

Reactor antineutrino flux evolution: 1958 days

Three types of modified models with new free parameters + HM/SM2018 are introduced to investigate the data and model difference

	the best-fit χ^2 /NDF when fitting to data			,
	Model	χ^2 /NDF	η	
$\sigma^{\mathrm{model},eg}$	$HM+^{235}U$	83/71 (1.4)	$0.985{\pm}0.021$	
$= \eta [F_5^g \sigma_5^e (1 + f_5^e) + F_8^g \sigma_8^e + F_9^g \sigma_9^e + F_1^g \sigma_1^e]$		83/72 (1.4)	1 (fixed)	
Alter U-235 spectrum	$SM2018+^{235}U$	80/71 (1.2)	$0.997{\pm}0.021$	
		80/72 (1.2)	1 (fixed)	
$\sigma^{\mathrm{model},eg}$	HM+ ²³⁹ Pu	116/71 (3.4)	$0.935{\pm}0.014$	
$= \eta [F_5^g \sigma_5^e + F_8^g \sigma_8^e + F_9^g \sigma_9^e (1 + f_9^e) + F_1^g \sigma_1^e]$		136/72 (4.5)	1 (fixed)	
Alter Pu-239 spectrum	SM2018+ ²³⁹ Pu	126/71 (4.0)	$0.995{\pm}0.014$	
		127/72 (4.0)	1 (fixed)	
$\sigma^{\mathrm{model},eg}$	HM+Equ	89/72 (1.7)	NA	
$= (1 + f_{\rm E}^e) [F_5^g \sigma_5^e + F_8^g \sigma_8^e + F_9^g \sigma_9^e + F_1^g \sigma_1^e]$	SM2018+Equ	82/72 (1.3)	NA	
Equal change				

- Altering the ²³⁹Pu spectrum only does not improve the agreement with data for either model.
- Altering the ²³⁵U spectrum or changing all isotope's spectra equally, can bring better agreement with data

Extraction of ²³⁵U and ²³⁹Pu isotope antineutrino spectra The isotope antineutrino spectrum can be extracted from fuel evolution

- The 3.5M antineutrinos detected in near sites are divided into 20 groups ordered by the ²³⁹Pu effective fission fraction
- Fit the ²³⁵U and ²³⁹Pu spectra, as two unknown arrays (26 energy bins for each isotope)

predicted spectra of the 20 groups

$$\chi^{2}(\eta^{5}, \eta^{9}) = 2 \sum_{djk} \left(S_{djk} - M_{djk} + M_{djk} \ln \frac{M_{djk}}{S_{djk}} \right) + f(\boldsymbol{\epsilon}, \boldsymbol{\Sigma})$$

measured spectra of the 20 groups constraint on nuisance parameters

- Not sensitive to the ²³⁸U and ²⁴¹Pu contributions, using the Huber-Mueller model as their priors, but assign >10% uncertainties both in rate and shape
- Time-dependent contributions from non-equilibrium, spent nuclear fuel, nonlinear nuclides, and backgrounds are considered
- An independent analysis using Markov Chain Monte Carlo based on Bayesian inference obtains consistent results

Phys. Rev. Lett. 123, 111801 (2019)

Extracted ²³⁵U and ²³⁹Pu spectra: 1958 days

- First extraction of the ²³⁵U spectrum of commercial reactors
- First measurement of the ²³⁹Pu spectrum
- In the 4~6 MeV energy range, the ²³⁵U and ²³⁹Pu spectra might have similar bump structure like the total spectrum.
- Local deviation(bump) : 235 U ~4 σ , 239 Pu ~1.2 σ

IBD yield ratio :

- 235 U: data/prediction = 0.92 ±0.023(exp.)±0.021(model)
- 239 Pu: data/prediction = 0.99 ±0.057(exp.) ±0.025(model)

²³⁵U is more likely to be responsible for "reactor $\bar{\nu}_e$ anomaly"

Extracted ²³⁵U and Pu-Combo Spectra

• Combine ²³⁹Pu and ²⁴¹Pu as one term to reduce the Pu uncertainty

 $s_{\text{combo}} = s_{239} + 0.183 \times s_{241}$

- Dependence on the input of ²⁴¹Pu is largely removed
- The extracted Pu-combo spectrum uncertainty: 6% (9% for ²³⁹Pu-only)

Phys. Rev. Lett. **123**, 111801 (2019)

Antineutrino energy spectrum unfolding

Physics goal: provide a precise data-based prediction for other reactor antineutrino experiments

- The extracted isotope spectra of ²³⁵U, ²³⁹Pu or Pu-combo are prompt spectra which contains the DYB detector response
- Detector response includes:
 - IBD neutron recoiling: energy shift
 - IAV effect: energy loss in inner acrylic vessel
 - Nonlinearity (scintillation quenching, electronics response)
 - ➢ Energy Resolution: ~8.5% at 1 MeV
- An operation called unfolding is performed to remove the detector response, transforming the prompt spectra into antineutrino energy spectra.

- > Inputs of unfolding: the IBD prompt spectrum and its covariance matrix, and the response matrix
- > Ouputs of unfolding: the antineutrino spectrum and the corresponding covariance matrix

Isotope antineutrino unfolding at Daya Bay

Total and isotope antineutrino energy spectra is unfolded by Wiener-SVD method*. *JINST 12, P10002 (2017)

Three unfolding methods were used:

- Wiener-SVD method
- Bayesian iteration method
- SVD method

An *Ac* smearing matrix obtained through Wiener-SVD procedure encodes effect from unfolding regularization into any model

Isotope antineutrino unfolding at Daya Bay

• An example of reactor IBD prediction using the Daya Bay unfolded spectra

- The difference between the prediction and the data are consistent within statistical uncertainty in the 1 to 7 MeV energy region.
- With known reactor fission fractions, the technique can predict the energy spectrum to a 2% precision (statistics, unfolding, systematics included).

Prediction for 3 different fission fraction stages for EH1 AD1 at Daya Bay

Joint Determination of Reactor Antineutrino Spectra from ²³⁵U and ²³⁹Pu Fission by Daya Bay and PROSPECT

Daya Bay

- The most precise measurement of $heta_{13}$
- Baseline to near detectors ~600 m
- Low-enriched uranium (LEU) commercial reactors
- Four main fissile isotopes evolves with time

PROSPECT

PROSPECT

- In search for active-to-sterile neutrino oscillations
- Baseline: 7.9 m
- High Flux Isotope Reactor
- Pure ²³⁵U fuel

Prompt IBD Spectrum Shape Compatibility between Daya Bay and PROSPECT

Map the DYB spectrum from DYB energy space into the PRO energy space through detector response functions:

$$S_{map}^{DYB} = R^{map}S_{p}^{DYB} = R^{PRO}(R^{DYB})^{-1}S_{p}^{DYB}$$

PROSPECT Response Matrix
Daya Bay Response Matrix
Daya Bay Measured Prompt Spectrum

Comparison between S_{map}^{DYB} and PROSPECT spectrum:

- χ^2 /NDF = 25.4/31
- p-value = 0.75
- Further validated with a frequentist approach
- Consistent

Joint analysis of Daya Bay and PROSPECT

Use PROSPECT measured prompt spectrum as a constraint term in the fitter of Daya Bay spectrum extraction analysis

 S^{fit} : prediction for ²³⁵U spectrum η^{rate} : rate free parameter

Phys. Rev. Lett. 128, 081801 (2022)

Comparison with Daya Bay only results:

- Extracted ²³⁵U and ²³⁹Pu spectra change at 2% level (well within uncertainties)
- Relative shape uncertainty of ²³⁵U: 3.5% -> 3% around 3 MeV
- Degeneracy between ²³⁵U and ²³⁹Pu decreases by ~20%

Phys. Rev. Lett. 128, 081801 (2022)

Jointly Unfolded ²³⁵U and ²³⁹Pu Spectrum

A joint unfolding was done via Wiener-SVD method, combing the spectra, response functions and covariance matrices from both experiments

Provides a more precise antineutrino energy spectrum for other reactor neutrinos measurements and applications

Summary

- The Daya Bay Experiment finished data taking and acquired the largest sample of reactor antineutrino to date:
 - \succ 5.5 million events with neutron captured on Gd.
- The updated evolution study shows:
 - The measured average flux, as well as their evolution, are inconsistent with the predictions of the Huber-Mueller model.
 - The SM2018 model agrees with the average flux and its evolution but fails to describe the energy spectrum.
- First extraction of the ²³⁵U spectrum from commercial reactors and first measurement of ²³⁹Pu spectrum.
 ➢ Both ²³⁵U and ²³⁹Pu has similar excess in 4~6 MeV range, with 4σ and 1.2σ deviations, respectively.
 ➢ ²³⁵U is more likely to be responsible for "reactor antineutrino anomaly".
- First combination between Daya Bay (LEU) and PROSPECT (HEU) to reduce the ²³⁵U spectrum uncertainty.
- The unfolded isotope antineutrino spectra provide a data-based prediction for reactor antineutrino experiments.

Backup slides

Improvements

• Statistics of nGd data:

Year	Calendar days	EH1	EH2	EH3	Total IBD's
2018 (PRL 121, 241805)	1958	1,794,417	1,673,907	495,421	3,963,745
2022 (arXiv:2211.14988)	3158	2,236,810	2,544,894	764,414	5,546,118

- Analysis:
 - Energy calibration
 - Electronics non-linearity calibrated at the channel-by-channel level
 - Improved non-uniformity correction
 - New correlated background after 2017
 - Remove additional very rare PMT flashers
 - Suppress and identify untagged muon events
 - Correlated background
 - New approach for determining the ⁹Li/⁸He background