Residual reactor \overline{v}_{e} measurement with the **Double Chooz experiment**

Anthony Onillon on behalf of the Double Chooz collaboration Technical University of Munich

AIEA meeting January 16, 2023

I. The Double Chooz experiment

- experimental principle
- analysis highlight and latest results

II. Residual antineutrinos

- modeling
- generality about residual antineutrinos

III. DC off-off periods

- prediction
- preliminary data/prediction comparison

IV. Conclusion

I. The Double Chooz experiment

- experimental principle
- analysis highlight and latest results

II. Residual antineutrinos

- modeling
- generality about residual antineutrinos

III. DC off-off periods

- prediction
- preliminary data/prediction comparison

IV. Conclusion

I. DC experiment IV. Conclusion II. Residual \overline{v}_e III. DC off-off

Non oscillation probability:

$P_{\overline{\nu}_e \to \overline{\nu}_e}(L, E) \simeq 1 - \sin^2(2\theta_{13})$

$$\sin^2\left(1.267 \frac{\Delta m_{13}(\text{eV}^2)\text{L}(\text{m})}{E(\text{MeV})}\right)$$

(two flavours approximation)

⇒ Systematic uncertainties highly suppressed in multiple detectors configuration at different baselines with identical detectors

I. DC experiment IV. Conclusion II. Residual \overline{v}_{ρ} III. DC off-off

Chooz-B Nuclear power plant

B2

R'

Near Detector

- <L>~400 m
- ~120 mwe
- ~900 IBD $_{\overline{v}_e}/d$

N4-PWR $\begin{array}{c} 2x4.25 \ GW_{th} \\ \textbf{-2.10^{21}} \ \bar{v}_{e} / \textbf{s} \end{array}$

Far Detector • <L>~1050 m

- ~300 mwe
- ~150 $IBD_{\overline{v}_{e}}/d$

Almost iso-flux site configuration (Same proportion of B1/B2 flux in ND & FD) \Rightarrow ND is almost a perfect monitor of FD

Commercial Pressurized Water Reactor

- Fresh fuel : UO₂ (²³⁸U + few percent of ²³⁵U) Solution Other fissile with fuel depletion
- Thermal power mainly induced by fission of 4 nuclei:

```
<sup>235</sup>U, <sup>239</sup>Pu, <sup>238</sup>U, <sup>241</sup>Pu
```


Expected number of IBD events

$$N_{\overline{\nu}_{e}}^{exp}(E,t) = \sum_{B1,B2} \frac{N_{p}\epsilon}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$$
$$\langle \sigma_{f} \rangle_{k} = \int_{0}^{x} dE \; S_{k}(E) \; \sigma_{IBD}(E)$$

$$(E,t) = \sum_{B1,B2} \frac{N_p \epsilon}{4\pi L^2} \times \frac{P_{th}(t)}{\langle E_f \rangle} \times \langle \sigma_f \rangle$$
$$\langle \sigma_f \rangle_k = \int_0^x dE \; S_k(E) \; \sigma_{IBD}(E)$$

Reactor antineutrinos

Fission spectra

Detection

I. DC experiment IV. Conclusion

$$\overline{v}_e + p \rightarrow e^+$$

- **Prompt signal:** ionisation induced by positron + annihilation γ 's
- **Delayed signal:** γ 's from neutron capture on Gd or/and H

 $\Rightarrow \overline{\mathbf{v}}_{e}$ signature: spatial and temporal correlation prompt/delayed signal

Double Chooz detectors

\nu-Target: liquid scintillator doped with 1 g/l of Gd (10.3 m³)

Inner detector

Two identical detectors ⇒ stable Gd loaded liquid scintillator developped (same batch)

+n

 ${\sf E}_{\sf thresh.}$: 1.8 MeV $\langle \sigma
angle \sim 10^{-43} {
m cm}^2$

II. Residual \overline{v}_e III. DC off-off

Accidental

Stopping muon

Fast neutron

Cosmogenic β-n

Two types of background

• Accidental coincidence:

y+ spallation **n**

• Fast neutron:

$$n + p \rightarrow p + n$$

• Stopping muon:

$$\mu \rightarrow e^{-} + v + v$$

• Cosmogenic β-n emitter:

⁹Li
$$\rightarrow \alpha + \alpha + e^{-} + v + n$$

correlated

 $\overline{\mathbf{v}}_{e} + p \rightarrow e^{+} + n$

Delayed mimic

Prompt mimic

Expected rate (day⁻¹)

2011-2015: near laboratory excavation, detector construction & commissioning

First DC Near + Far Result

- Preliminary @ CERN Seminar
- Officially @ Neutrino 2018
- Published @ Nature Physics 2020

Nature Physics - 2020

ARTICLES https://doi.org/10.1038/s41567-020-0831-y

physics
Check for updates

nature

Double Chooz θ_{13} measurement via total neutron capture detection

The Double Chooz Collaboration*

Neutrinos were assumed to be massless particles until the discovery of the neutrino oscillation process. This phenomenon indicates that the neutrinos have non-zero masses and the mass eigenstates (ν_{1r} , ν_{2r} , ν_{3}) are mixtures of their flavour eigenstates ($\nu_{\mu r}$, $\nu_{\mu r}$, ν_{τ}). The oscillations between different flavour eigenstates are described by three mixing angles (θ_{12r} , θ_{23r} , θ_{13}), two differences of the squared neutrino masses of the ν_2/ν_1 and ν_3/ν_1 pairs and a charge conjugation parity symmetry violating phase δ_{CP} . The Double Chooz experiment, located near the Chooz Electricité de France reactors, measures the oscillation parameter θ_{13} using reactor neutrinos. Here, the Double Chooz collaboration reports the measurement of the mixing angle θ_{13} with the new total neutron capture detection technique from the full data set, yielding $\sin^2(2\theta_{13}) = 0.105 \pm 0.014$. This measurement exploits the multidetector configuration, the isoflux baseline and data recorded when the reactors were switched off. In addition to the neutrino mixing angle measurement, Double Chooz provides a precise measurement of the reactor neutrino flux, given by the mean cross-section per fission $\langle \sigma_t \rangle = (5.71 \pm 0.06) \times 10^{-43}$ cm² per fission, and reports an empirical model of the distortion in the reactor neutrino spectrum.

- First θ_{13} analysis with both detectors \Rightarrow strong flux systematics cancellation
- IBD with Total Neutron Capture (Gd + H + C) ⇒ x2.5 statistics

livetime:

- ND+FD: 258 days
- FD: 818 days

Nature Physics - 2020

$\sin^2 2\theta_{13}$

Spectral distortion

 $\sin^2(2\theta_{13}) = 0.102 \pm 0.011$ (syst.) + 0.04 (stat.)

- Unambigious ND/FD deficit and distortion due to θ_{13}
- > Good agrement with other experiments

Huber/Muller prediction

Hightlight on latest results (2/2)

Mean cross-section per fission

> Data/MC shape incompatibility

 $\langle \sigma_f \rangle = (5.75 \pm 0.06) \times 10^{-43} \text{ cm}^2$

- \blacktriangleright Very accurate measurement ($\sigma = 1\%$)
- > Data/MC deficit in agreement with other experiments

- experimental principle
- analysis highlight and latest results

II. Residual antineutrinos

- modeling
- generality about residual antineutrinos

III. DC off-off periods

- prediction
- preliminary data/prediction comparison
- IV. Conclusion

4 off-off periods in 2017 with both detectors on

- (1): 1 april: \sim 37 h \Rightarrow Planned shutdown of B2. Maintenance control on reactor building.
- \Rightarrow Planned shutdown of B1. Maintenance operation in the engine room. (2): 17 august: ~ 26 h
- 3: 23 august:
- (4): 3 october: \sim 500 h \Rightarrow Unplanned shutdown of B1. Unexpected electric grid deconnexion

The 4 off-off periods of Chooz-B in 2017

- \sim 24 h \Rightarrow Unplanned automatical shutdown of B1. Unexpected closure of a steam value

 \Rightarrow Small residual \overline{v}_e emission expected after shutdown from accumulation of fission product with long live time

Summation method

 $S_{\overline{\nu}_e}(E,t) = \sum_{p} \left(\lambda_p N_p(t) \sum_{i} BR^{p,i} S_{\overline{\nu}_e}^{p,i}(E) \right)$

Reactor simulations

- APOLLO-2.8.4 (deterministic code Boltzman equation resolution)
- DARWIN-3 (time evolution Bateman equation resolution)
 - \Rightarrow commonly used for residual power estimation
 - \Rightarrow with evaluated nuclear data: JEFF-3.1.1

 $S_{\overline{\nu}_e}(E,t) = \sum_p A_p(t) S_{\overline{\nu}_e}^p(E)$

- A_p: activity of the beta decaying isotope p
- $S_{\overline{v}_{e},p}$: \overline{v}_{e} spectra of the isotope p
- λ_p : decay constant of isotope p
- N_p : number of particule of isotope p
- $S_{\overline{v}_{e},p}$: \overline{v}_{e} spectra of the branche *i* of isotope *p*
- $BR^{p,i}$: branching ratio of the transition *i* of isotope *p*

$S_{\overline{\mathcal{V}}_{\rho}}$ library

BESTIOLE (see 10.1103/PhysRevC.83.054615) advanced modeling with nuclear structure calculation for 1st forbidden non unique transition (X. Mougeot) – ¹⁴⁴Pr

 \Rightarrow Evaluated nuclear data: ENSDF, AME, NUBASE

See talk BESTIOLE by Lorenzo Perisse

Expected residual $\overline{\nu}_e$ and $IBD_{\overline{\nu}_e}$ spectrum from a discharged assembly

Fig. Typical neutrino spectrum (left) and associated IBD spectrum (right) from a UO₂ (4%) spent fuel assembly irradiated for 45 GWd/t.

Residual \overline{v}_e & IBD $_{\overline{v}_e}$ spectrum

Expected residual IBD $_{\overline{V}_{e}}$ flux from a discharged assembly

Fig. IBD_{\overline{v}_{e}} flux from a UO₂ (4%) spent fuel assembly irradiated for 45 GWd/t.

- 1 order of magnitude decrease after ~ 10 mn
- 2 order of magnitude decrease after ~15 h
- 3 order of magnitude decrease after \sim 2.5 years

Expected residual IBD $_{\overline{V}_{\mathbf{P}}}$ flux from a discharged assembly

Fig. Relative isotope contribution to the $IBD_{\overline{V}_{e}}$ flux from a UO₂ (4%) spent fuel assembly irradiated for 45 GWd/t.

 \Rightarrow After few hours of cooling \sim 6 isotopes are dominating the residual \overline{v}_e emission.

	Near [%]	Ι_β [%]	$oldsymbol{Q}_eta$ [MeV]	N ^{tot} _b	N ^{IBD}	Transition type & IBD contribu Allowed / Forb uniq. / 1 st forb n-uniq. / n th forb r
144Pr	53.0	100	2.9974 (24)	10	2	0 / 1 (0.2%) / 1 (99.8%
106Rh	37.1	100	3.5449 (53)	30	6	6 (100%) / 0 / 0
92Y	2.6	100	3.6425 (91)	12	4	0 / 3 (95.1%) / 1 (4.9%)
88Rb	2.1	100	2.9177 (26)	14	4	1 (0.2%) / 1 (98.8%) / 3 (1.0%)
93Y	1.8	100	2.8949 (105)	13	3	1 (0.8%) / 1 (97.8%) / 3 (1.4%)
90Y	0.9	99.9885 (14)	2.2785 (16)	3	1	0 / 1 (97.2%) / 2 (2.3%)
Total	97.5					
	1					

Tab. Summary of the β^{-} decay properties of the dominant contributors to the residual IBD flux.

Transition type	Contribution	Shape factor $C(Z, W)$		
Allowed	38.1 %	1	simple modeling	
Forb. Unique	7.5 %	polynomial in p_e , $p_{ m V}$	simple modeling	
1st forb non unique	0.2 %	ξ-approximation	approximated	
1° lorb. non-unique	54.3 %	nuclear structure calculation	advanced	
n th forb. non–unique	0 %		approximated	

Tab. Transition type contribution and modeling

Transition type – review for the main contributors

Fig. \overline{v}_e spectrum of the 4 dominant residual contributors (97.5% of the flux in ND). Uncertainty from BESTIOLE model.

Dominante transition of ¹⁴⁴Pr modeled with advanced nuclear structure calculation (Xavier Mougeot - CEA) Only 0.2% of the IBD flux of the top 6 residual contributors is modeled using the ξ-approximation

> Advanced modeling of shape factor with nuclear structure calculation (NSC) for the dominante branch of ¹⁴⁴Pr \succ Difference between calculation with NSC and ξ -approximation used as 1 σ uncertainty on the shape factor modeling

¹⁴⁴Pr modeling

Tab. Comparison of ¹⁴⁴Pr neutrino (left) and corresponding IBD neutrino spectrum (right) modeled with the ξ-approximation or with nuclear structure calculation

- experimental principle
- analysis highlight and latest results
- II. Residual antineutrinos
 - modeling
 - generality about residual antineutrinos

III. DC off-off periods

- prediction
- preliminary data/prediction comparison
- IV. Conclusion

I. DC experiment IV. Conclusion III. DC off-off

Refuelling

- Every ~12-14 months
- 1/3 of burnt fuel assemblies removed 1/3 of fresh fuel assemblies added
- Operation time: \sim 6-8 weeks ^t⇔ unsynchronized operation between B1 & B2
- Spent assemblies stored in pools for few years before evacuation from the site

Reactor refuelling

Power histories illustration for a typical off-off

Four components to the residual \overline{v}_e during a off-off

- 1 \overline{v}_e from spent fuel assemblies stored in B1 pool
- 2 \overline{v}_e from spent fuel assemblies stored in B2 pool
- 3 \overline{v}_{e} from burnt fuel assemblies in the reactor under refuelling and keep for the next irradiation cycle
- 4 \overline{v}_e from burnt fuel assemblies in the reactor temporarily shutdown

Expected flux at the near/far detector

 $N_{\overline{\nu}_e} = \frac{N_p \varepsilon I}{\sum}$

 $\varepsilon P(\bar{\mathbf{v}}_e \to \bar{\mathbf{v}}_e) =$

$$\frac{P(\bar{v}_e \to \bar{v}_e)}{4\pi L^2} \int \phi(\boldsymbol{E})\sigma(\boldsymbol{E})d\boldsymbol{E}$$

$$\frac{\int \varepsilon(E) P(\bar{v}_e \to \bar{v}_e)(E) \phi(E) dE}{\int \phi(E) dE}$$

Residual spectrum S(E,t) from summation calculation

- N_p : proton number
- $\varepsilon(E)$: energy dependent efficiency
- $P(\overline{v}_e \rightarrow \overline{v}_e)$: non oscillation probability
- $\sigma(E)$: IBD cross-section

Absolute efficiency

- Eprompt, Edelay cut
- ΔT , ΔR , ANN
- Escale
- Background vetoes
- Correction factor data-MC (Gd fraction, spill-in out)

Proton number

Target	6.767×10^{29}	6.739×10^{-7}
GC	15.80×10^{29}	15.73×10^{-7}

Reactor power history used for APOLLO/DARWIN simulation of the discharged assemblies stored in the pools

Reactor B1

Typically 15-17 GWd/t irradiation cycle

Power history for the simulation: ~1 day time step over the three irradiation cycle + 1 hour time step the day preceding the dischargement

Reactor B2

$IBD_{\overline{\mathcal{V}}_e}$ from spent fuel assemblies in the pools (2/2)

Fig. IBD $_{\overline{V}_e}$ flux at the ND by the B1 (top) and B2 (bottom) pools.

Exemple for the off-off 2, 3 and 4 (reactor B1 under refuelling)

Reactor power history

- > Detailled power history input for the simulation
- $\succ \overline{v}_{e}$ flux mostly depend of the assemblies burnup

IBD $_{\overline{V}_{o}}$ from the cores under refueling

Reactor power history

Off-off 3 (B1 stopped)

Off-off 4 (B1 stopped)

> Detailled power history input for the simulation (down to 10 mn time step the day precedding the off)

 $\geq \overline{v}_{e}$ flux strongly depend of power history for ~1 day following the shutdown $\succ \overline{v}_{e}$ flux mostly depend of burnup after 1 day

Fig. Expected IBD $_{\overline{V}_{e}}$ rate in the ND for each off-off periods as a function of time

(right) energy

 \succ Residual \overline{v}_{e} flux strongly depend of power history for ~ 1 day following the shutdown

- $\geq \sim 3.5$ evts/day expected after the first day of off-off
- > Dominant contribution in the 1-3 MeV range in visible energy

Expected ND rates and spectrum

Fig. Expected IBD_{\overline{V}_{ρ}} spectrum at the ND for each off-off periods as a function of the true (left) and visible

Expected IBD spectra

Fig. Expected IBD_{\overline{V}_e} spectrum in the ND (left) and FD (right) for all off-off period combined (no runlist).

	Relative contribution [%]			
	Reactors	Pools		
Near	56.5	43.5		
Far	61.7	38.3		

Tab. Expected number of $IBD_{\overline{V}_e}$ in the ND and FD for all off-off periods combined.

Normalization uncertainties summary

		Pre	liminary
		ND	FD
Chooz site	- Distance assemblies-detectors	2.9	0.9
	- θ_{13} oscillation	0.1	0.3
Detector	- detection efficiency	0.3	0.4
	- proton number	0.7	0.7
Reactor	- Thermal power	0.5	0.5
	- Reactor stop time	0.2	0.2
	- IBD cross-section	0.1	0.1
	- Fission product inventory	2.1	2.1
	- Amount of spent fuel in the pool	2.0	1.5
	- \overline{v}_e spectra	6.0	6.0
	Total	7.4 %	6.7 %

- Total uncertainty dominated by the uncertainty associated to the \overline{v}_e spectra modeling (NSC ¹⁴⁴Pr)
- Request to EDF to lift approximations associated to the pool dimension and fuel content in the pools Status of spent fuel from old reactor cycle unknown ⇒ treated as systematic

Off-off data

- Reference background model from last analysis (Nature physics)
- Limited statistic: $\sigma_{stat} \sim 15\%$
- Very good preliminary data/prediction agreement

 $N_{IBD}^{data} = 106 \pm 18 \text{ evts}$ 1-3 MeV: $N_{IBD}^{pred} = 88 \pm 6 \text{ evts}$

Off-off data

Data (bckg. substracted) vs prediction

	Data	Prediction	Differe
ND	106 ± 18	88 ± 6	18
FD	27 ± 14	15 ± 1	12

- Reference background model from last analysis (Nature Physics)
- Limited statistic: $\sigma_{stat}^{\textit{ND}} \sim 17\%$, $\sigma_{stat}^{\textit{FD}} \sim 52\%$
- Very good preliminary data/prediction agreement

- experimental principle
- analysis highlight and latest results

II. Residual antineutrinos

- modeling
- generality about residual antineutrinos

III. DC off-off periods

- prediction
- preliminary data/prediction comparison

IV. Conclusion

Double Chooz reaching its life-cycle end...

- End of data taking in 2020
- Detectors under dismantlement
- Latest published result: $sin^2(2\theta_{13}) = 0.102 \pm 0.011 (syst.) + 0.04 (stat.)$ $\langle \sigma_f \rangle = (5.75 \pm 0.06) \times 10^{-43} \text{ cm}^2$

 \Rightarrow Still room for sin²(2 θ_{13}) improvement (expected 1 $\sigma \leq 0.01$ for the final result)

Off-off measurement

- ~ 24 days with both reactor off \Rightarrow very unique data set in the framework of reactor experiments
- Detailled prediction, including nuclear structure calculation for ¹⁴⁴Pr isotope
- Dataset for both detector, statistic dominated

 \Rightarrow Demonstrate the great progress in detection and prediction over the last 20 years!

Analysis under finalisation – publication foreseen soon

• Very good preliminary data/prediction agreement: $N_{IBD}^{data,ND} = 106 \pm 18 \text{ evts measured / } N_{IRD}^{pred,ND} = 88 \pm 6 \text{ evts}$

Impact of the neutrino spectrum shape on the survival probability

Fig. IBD neutrino spectrum from a $UO_2(4\%)$ spent fuel assembly irradiated for 45 GWd/t.

Prediction strategy (2/2)

Fig. Oscillation probability for the neutrino spectrum of an assembly irradiated up to 45 GWd/t during its cooling. Colored bands represent the 1σ uncertainty induced by $\sigma_{\theta_{13}}$ (for clarity only display on core cases)

