INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

CHEMISTRY ASSOCIATED WITH PLASMA-LIQUID INTERACTIONS: CHALLENGES AND OPPORTUNITIES

LUKEŠ PETR

lukes@ipp.cas.cz

Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00 Prague, Czechia

PLASMA-LIQUID INTERACTIONS

TARGET APPLICATIONS USING PLASMA-LIQUID INTERACTIONS

- a) Environmental (water treatment)
- b) Biological (medicine)
- c) Agriculture
- d) Materials processing

FUNDAMENTAL KNOWLEWDGE OF PHYSICAL, CHEMICAL, BIOLOGICAL PROCESSES/MECHANISMS INDUCED BY PLASMA: CHALLENGES & OPPORTUNITIES

Effects dependent on the contact of plasma with liquid, power, electron density, physical properties and chemical composition of gas and liquid;

- a) plasma formed directly in liquid physical processes are more significant
- b) plasma formed in the gas phase in contact with liquid (in bubbles, droplets, aerosols, liquid spray, liquid surface) chemical effects are dominant

PLASMA-LIQUID INTERACTIONS

Initiation reactions by discharge
(plasma channel)
$$H_{2}O + e^{-} \rightarrow \bullet H + \bullet OH + e^{-}$$
$$H_{2}O + e^{-} \rightarrow \bullet H + \bullet O + \bullet H + e^{-}$$
$$H_{2}O + e^{-} \rightarrow H_{2} + \bullet O + e^{-}$$
$$H_{2}O + e^{-} \rightarrow H_{2}O^{+} + 2 e^{-}$$
$$H_{2}O + M \rightarrow \bullet H + \bullet OH + M$$

Average T_e in underwater plasma ~ 0.5 - 2 eV, which is insufficient for direct dissociation of water. More likely multistep process incl. charge exchange reactions of atomic ions with water molecules and subsequent dissociative recombination $e^- + H_2O^+ \rightarrow OH^{\bullet} + H^{\bullet}$; $e^- + H_3O^+ \rightarrow OH^{\bullet} + H_2 + e^-$

What are time scales of these processes? Does pulse duration affect these processes?

PLASMA-LIQUID INTERACTIONS

THERMAL EFFECTS

(applied power, liquid conductivity)

EROSION OF ELECTRODES

(sputtering, melting of metals by plasma)

Ruma, Lukes (2013) J. Phys. D: Appl. Phys. 46: 125202

Lukes et al (2006) Czech. J. Phys. 56: B916; Lukes et al (2011) Plasma Sources Sci. Technol. 20: 034011

:::IPP

PLASMA-LIQUID INTERACTIONS

Dependent on the contact of plasma with liquid, power, electron density, physical properties and chemical composition of gas and liquid;

- a) plasma formed directly in liquid physical processes are more significant
- **b) plasma formed in the gas phase in contact with liquid** (in bubbles, droplets, aerosols, liquid spray, liquid surface) chemical effects are dominant

Locke, Lukes, Brisset: In *Plasma Chemistry and Catalysis in Gases and Liquids, Ch.6*, Wiley-VCH, 2012

PLASMA-LIQUID INTERACTIONS

Dependent on the contact of plasma with liquid, power, electron density, physical properties and chemical composition of gas and liquid;

- a) plasma formed directly in liquid physical processes are more significant
- **b) plasma formed in the gas phase in contact with liquid** (in bubbles, droplets, aerosols, liquid spray, liquid surface) chemical effects are dominant

Locke and Shih: *Plasma Sources Sci. Technol.* 20 (2011) 034006 Locke, Lukes, Brisset: In *Plasma Chemistry and Catalysis in Gases and Liquids, Ch.6,* Wiley-VCH, 2012

- reactions of primary and secondary species produced by plasma at gas-liquid interface (RONS)
- > transfer of chemistry from plasma into the treated liquid
- chemically reactive liquids from plasma (extended lifetime of chemical reactivity, i.e. PAW, PCL, ...)

• Henry's law solubility coefficient $k_{\rm H} \stackrel{\text{def}}{=} \frac{aqueous \ concen.}{partial \ pressure}$

species	k _H (mol/m³ Pa) ∼	$k_{\rm H}$ normalized to O ₃
H_2O_2	10 ³	10 ⁷
HNO ₃	10 ³	10 ⁷
HNO ₂	10 ⁻¹	10 ³
NO ₂	10 ⁻⁴	1
NO	10 ⁻⁵	10 ⁻¹
O ₃	10 ⁻⁴	1

Bruggeman et al, Plasma Sources Sci. Technol. 25 (2016) 053002

CHEMISTRY OF PLASMA-LIQUID INTERACTIONS

- reactions of primary and secondary species produced by plasma at gas-liquid interface (RONS)
- > transfer of chemistry from plasma into the treated liquid
- chemically reactive liquids from plasma (extended lifetime of chemical reactivity, i.e. PAW, PCL, ...)

	Honry's law	solubility	coefficient		ef	aqueous concen
•	i ielii y S iaw	Solubility	COEIIICIEIII	л н =	=	partial pressure

species	$k_{\rm H}$ (mol/m ³ Pa) ~	$k_{\rm H}$ normalized to O_3
H_2O_2	10 ³	10 ⁷
HNO₃	10 ³	10 ⁷
HNO ₂	10 ⁻¹	10 ³
NO ₂	10 ⁻⁴	1
NO	10 ⁻⁵	10 ⁻¹
O ₃	10 ⁻⁴	1

H₂O₂ yields by various plasma sources

- > Best case: 50 to 80 g/kWh for gas/liquid phase plasma (water spray)
- > Thermodynamic limit: 400 g/kWh ($H_2O_g \rightarrow H_2O_{2l}$); kinetic limit 180 g/kWh
- Current commercial costs (anthaquinone method): 10 to 100 g/kWh (equivalent)

CHEMISTRY OF PLASMA-LIQUID INTERACTIONS

- reactions of primary and secondary species produced by plasma at gas-liquid interface (RONS)
- > transfer of chemistry from plasma into the treated liquid
- chemically reactive liquids from plasma (extended lifetime of chemical reactivity, i.e. PAW, PCL, ...)

Machala et al, J. Phys. D: Appl. Phys 52 (2019) 034002

CI⁻ + O
$$\rightarrow$$
 OCI⁻ & H₂O₂, NO₂⁻, H⁺
NaCl \downarrow \downarrow \downarrow
¹O₂, OCI•, OH• NO₂CI, HOCI

RONS produced in N_2/O_2 gas-liquid plasma systems

Formation of H_2O_2 , NO_3^- , NO_2^- in water; concentrations variations with plasma treatment time dependent on pH of treated water. Increase of acidity of plasma treated water. Post-discharge changes in RONS concentrations.

Laurita et al (2015) Clin. Plasma Med. 3 (2): 53-61

PP PEROXYNITRITE CHEMISTRY IN AIR PLASMA TREATED LIQUIDS

Post-discharge liquid phase reactions of RONS produced in N_2/O_2 gas-liquid plasma systems

Analytic evidence on ONOOH formation from the kinetics H_2O_2/HNO_2 decay in PAW – pH dependent, 3rd order rate reaction, detection of post-discharge formation of OH• and NO_2 •

Acidic decomposition of NO_{2[±]}

$$2 \operatorname{NO}_2^- + 2 \operatorname{H}^+ \leftrightarrow 2 \operatorname{HNO}_2 \xrightarrow{pH < 3.5} \operatorname{NO} \bullet + \operatorname{NO}_2 \bullet + \operatorname{H}_2 \operatorname{O}$$

$$\stackrel{}{\sim} \underbrace{\text{Peroxynitrite formation via NO}_2^-/H_2O_2}_{\text{NO}_2^-} + H_2O_2 + H^+ \xrightarrow{-H_2O} O = \text{NOOH} \xrightarrow{\text{pH} < 6.8} OH^{\bullet} + \text{NO}_2^{\bullet}$$

$$\frac{r_{ONOOH}}{dt} = \frac{d[ONOOH]}{dt} = k [H^+][H_2O_2][\text{NO}_2^-]$$

$$k = 4.2 \times 10^3 \,\text{M}^{-2} \,\text{s}^{-1}$$

Lukes et al. Plasma Sources Sci. Technol. 23 (2014) 015019

PP PEROXYNITRITE CHEMISTRY IN AIR PLASMA TREATED LIQUIDS

(A)

(B)

Lifetime/stability of PAW activity – effect of pH, H_2O_2/NO_2^- , temperature

$$NO_{2}^{-} + H_{2}O_{2} + H^{+} \xrightarrow{-H_{2}O} O = NOOH \xrightarrow{pH < 6.8} OH \bullet + NO_{2} \bullet$$
$$2 NO_{2}^{-} + 2 H^{+} \leftrightarrow 2 HNO_{2} \xrightarrow{pH < 3.5} NO \bullet + NO_{2} \bullet + H_{2}O$$

$$r_{ONOOH} = \frac{d[ONOOH]}{dt} = k(T) [H^+] [H_2O_2] [NO_2^-]$$

REFERENCE PLASMA SOURCE (EU COST PLASMA JET)

He + <1% of molecular gas (O_2 , H_2O , N_2 ,...), RF driven 13.56 MHz at 230 Vrms

- well characterized source of reactive species (O, OH, N, NO, O₃...)
- radical "tunable" by gas mixture
- only effluent in contact with substrate

Flux of O atoms

Ellerweg et al. New Journal of Physics 12 (2010) 013021

O ATOMS FROM PLASMA CAN DIRECTLY INITIATE CHEMISTRY IN THE LIQUID

H₂O₂ formation + phenol as chemical probe

- direct oxidation by O atoms vs indirect reaction of O atoms via OH radicals? [1,2]
 O_(aq) + H₂O_(aq) → 2 OH_(aq)
 O_(aq) + H₂O_(aq) → O-OH_{2(aq)} → H₂O_{2(aq)}
- study with labeled ${}^{18}O_2$ in He plasma jet [3] ${}^{18}O_2 \rightarrow {}^{18}O_{(aq)} + C_6H_5OH \rightarrow C_6H_4OH^{18}OH$
- reactions of phenol at gas-liquid interface via (MD) simulation studies [4,5]

[1] Hefny M.M. et al (2016) J. Phys. D: Appl. Phys. 49 (40): 404002;
[2] Xu, Lukes (2020) J. Phys.D: Appl. Phys 53 (27): 275204,
[3] Benedikt J. et al. (2018) Phys. Chem. Chem. Phys. 20 (17): 12037,
[4] Sgonina K. et al (2021) J. Appl. Phys. 130: 043303,
[5] Xu, Lukes (2021) J. Mol. Liquids 341: 117378

O ATOMS FROM PLASMA CAN DIRECTLY INITIATE CHEMISTRY IN THE LIQUID

Oxychlorine chemistry in NaCl

 formation of hypochlorite in plasma treated NaCl via reaction

 $O + C|^{-} \rightarrow |OC|^{-}$

- oxychlorine HOCI scales with treatment time and concentration of chlorides, saturation at very high [NaCI] > 2M, virtually all plasmasupplied O atoms can be captured by CI- in highly concentrated NaCI
- => transport-limited rate for reaction of Cl- with ROS (O, OH)

[1] Jirasek, Lukes (2019) Plasma Sources. Sci. Technol. 28 (3): 035015, [2] Jirasek, Lukes (2020) J. Phys. D: Appl. Phys. 53 (50): 505206

O ATOMS FROM PLASMA CAN DIRECTLY INITIATE CHEMISTRY IN THE LIQUID

Oxychlorine chemistry in NaCl

 formation of hypochlorite in plasma treated NaCl via reaction

 $O + CI^{-} \rightarrow OCI^{-} k = 1.64 \times 10^{5} M^{-1} s^{-1}$

- oxychlorine chemistry by hypochlorite OCI⁻, chlorite ClO₂⁻, chlorine dioxide ClO₂, chlorate ClO₃⁻
- post-discharge reactivity of plasmatreated saline solutions/PBS through oxychlorine products (oxidizing power remains for hours)

 $3 \text{ HOCI} \rightarrow \text{CIO}_3^- + 2\text{CI}^- + 3\text{H}^+$

[1] Jirasek, Lukes (2019) Plasma Sources. Sci. Technol. 28 (3): 035015, [2] Jirasek, Lukes (2020) J. Phys. D: Appl. Phys. 53 (50): 505206

- Culture media complex mixture of inorganic salts and organic compounds such as amino acids, vitamins, glucose, antibiotics, and other compounds - great effects on the properties and activity of the generated plasma-treated liquids.
- Diagnostics of reactive species and reaction pathways in these complex systems is challenging – selectivity, sensitivity, interferences – need of suitable analytical methods and correlation of chemical effects with their biochemical activity.
- Plasma treated media can have different biological effects can affect gene expression, signal transduction, metabolic networks, induce apoptosis (cell death, important for cancer therapy) – coupling chemical effects with their biochemical activity.

Formulation for Dulbecco's Modified Eagle's
Medium (DMEM) ATCC [®] 30-2002

Vitamins (g/liter)

Inorganic	Salts	(g/liter
-----------	-------	----------

CaCl ₂ (anhydrous)	0.20000	Choline Chloride	0.00400	
	0.00010	mue Inesitel	0.00400	
	0.09770	Nicotinomido	0.00720	
	1,50000	D Pontethonia Asid	0.00400	
	F 40000	(homicalcium)	0.00400	
	0.40000	(nemicalcium)	0.00400	
	0.12500	Pihoflovin	0.00400	
Amino Acido (g/litor)			0.00040	
Amino Acids (g/itter)		I niamine-HCI	0.00400	
L-Arginine HCI	0.08400			
L-Cystine·2HCl	0.06260	Other (g/liter)		
L-Glutamine	0.58400	Other (gritter)		
Glycine	0.03000	D-Glucose	4.50000	
L-Histidine-HCI-H ₂ O	0.04200	Phenol Red, Sodium Salt	0.01500	
L-Isoleucine	0.10500	Sodium Pyruvate	0.11000	
L-Leucine	0.10500			
L-Lysine·HCl	0.14600			
L-Methionine	0.03000			
L-Phenylalanine	0.06600			
L-Serine	0.04200			
L-Threonine	0.09500			
L-Tryptophan	0.01600			
L-Tyrosine 2Na 2H ₂ O	0.10379			
L-Valine	0.09400			

CHLORINATION OF AMINO ACIDS IN PLASMA TREATED PBS

 $0 + Cl^- \rightarrow 0Cl^-$

PLASMA TREATMENT OF AMINO ACIDS (Leucine, Phenylalanine, Tyrosine)

- > Primary no oxidation of amino acids but formation of OCI- followed by formation chloramines of amino acids
- > Decay of chloramines of amino acids to tertiary products

[1] Jirasek, Kovalova, Tarabova, Lukes (2021) J. Phys. D: Appl. Phys. 54 (50): 505206, [2] Jirasek, Tarabova, Lukes (2022) Plasma Proc. Polym. 19: 2200079

(1)

BACTERICIDAL EFFECTS OF AMINO ACIDS IN PLASMA TREATED PBS

PLASMA TREATMENT OF AMINO ACIDS (Leucine, Phenylalanine, Tyrosine)

- > Primary no oxidation of amino acids but formation of OCI- followed by formation chloramines of amino acids
- > bactericidal properties in PBS without AA due to OCI-, with plasma treated amino acids due to chloramines

[1] Jirasek, Kovalova, Tarabova, Lukes (2021) J. Phys. D: Appl. Phys. 54 (50): 505206, [2] Jirasek, Tarabova, Lukes (2022) Plasma Proc. Polym. 19: 2200079

PLASMA TREATMENT OF DMEM/RPMI

- Time delay in bactericidal effect of PT-DMEM/RPMI on E. coli \geq
- Major effects caused by post-discharge processes in plasma treated \succ media

Jirasek, Tarabova, Lukes (2023) Plasma Proc. Polym. 20: e2300052

Formulation for Dulbecco's Modified Eagle's Medium (DMEM) ATCC[®] 30-2002

Inorganic Salts (g/liter)	
CaCl ₂ (anhydrous)	0.20000
$Fe(NO_2)_2 \cdot 9H_2O$	0.00010
MgSO ₄ (anhydrous)	0.09770
KCI	0.40000
NaHCO ₃	1.50000
NaCl	6.40000
NaH ₂ PO ₄ ·H ₂ O	0.12500
Amino Acids (g/liter)	
L-Arginine HCI	0.08400
L-Cystine-2HCI	0.06260
L-Glutamine	0.58400
Glycine	0.03000
L-Histidine-HCI-H ₂ O	0.04200
L-Isoleucine	0.10500
L-Leucine	0.10500
L-Lysine HCI	0.14600
L-Methionine	0.03000
L-Phenylalanine	0.06600
L-Serine	0.04200
L-Threonine	0.09500
L-Tryptophan	0.01600
L-Tyrosine 2Na 2H ₂ O	0.10379
L-Valine	0.09400

/itamins (g/liter)	
Choline Chloride	0.00400
olic Acid	0.00400
nyo-Inositol	0.00720
licotinamide	0.00400
)-Pantothenic Acid (hemicalcium)	0.00400
Pyridoxine HCI	0.00400
Riboflavin	0.00040
hiamine·HCl	0.00400

Other (g/liter)		
	D-Glucose	
ĺ	Phenol Red, Sodium Salt	

D-Glucose	4.50000
Phenol Red, Sodium Salt	0.01500
Sodium Pyruvate	0.11000

PLASMA TREATMENT OF DMEM/RPMI

- Chlorination of amino acids AA-chloramines
- Oxidation of glucose malondialdehyde

Jirasek, Tarabova, Lukes (2023) Plasma Proc. Polym. 20: e2300052

OXIDATION VS NITRATION VS CHLORINATION REACTIONS IN LIQUIDS

phenol as chemical probe – oxidation (O, OH, O₃) nitration (NO₂•, NO•, NO+), chlorination (HOCI)

Lukes et al. (2014) Plasma Sources Sci. Technol. 23: 015019

Jirasek, Lukes (2019) Plasma Sources. Sci. Technol. 28 (3): 035015

Great variability due to used plasma source, composition of the gas and liquid. Complexity of the chemistry and diagnostics challenges increases with the chemical content.

	water	NaCI / PBS	Culture media
рН	acidic	acidic/neutral/alkaline	neutral
Measured /proposed active species	$H_2O_2/O_2^{-\bullet}$ HNO_2/NO_2^{-} , ONOOH, O_2NOOH (OH•, NO_2^{\bullet})	$H_2O_2/O_2^{-\bullet}$ HNO_2/NO_2^{-} , ONOOH (OH•, NO_2^{\bullet}) OCI ⁻ , NH_2CI	H_2O_2 (R-O-O-R') plasma modified aminoacids/other comp. OCI ⁻ , NH ₂ CI, ONOO ⁻
Observed lifetime/stability	minutes to hours (dependent on pH, temperature, H ₂ O ₂ /HNO ₂ conc.)	minutes to hours (dependent on pH, temperature, H ₂ O ₂ /HNO ₂ conc.)	hours to months (dependent on temperature, chemical content)

:: IPP

CHEMICAL PROCESSES/MECHANISMS INDUCED DUE PLASMA-LIQUID INTERACTIONS: CHALLENGES & OPPORTUNITIES

- Tailoring plasma for specific effects: Effects dependent on the contact of plasma with liquid, power, electron density, physical properties and chemical composition of gas and liquid
- > Chemistry in **plasma-treated liquids** direct vs indirect processes
- Diagnostics of reactive species and reaction pathways with increasing complexity systems selectivity, sensitivity, interferences – suitable analytical methods and correlation of chemical effects with their biochemical activity coupled with modeling.
- ▶ **N-related chemistry**: peroxynitrite formation $H_2O_2 + NO_2^-$ under acidic conditions, decay into NO_2^{\bullet} and OH• radicals, nitrogen fixation in liquid
- O atom-related chemistry: chlorination vs oxidation of organics in saline solutions, cytotoxicity of Cl-compounds (e.g., decay products of dichloramines of amino acids)
- → **CI-related chemistry** in saline solutions: formation of OCI⁻ by O atoms, competition reactions OCI⁻ with higher oxychlorine products, $O + CI^- \rightarrow OCI^-$ (k = 1.64 x 10⁵ M⁻¹s⁻¹)