Technical Meeting on Emerging Applications of Plasma Science and Technology IAEA Headquarters: Sep 21, 2023

Recent Developments in Atmospheric Pressure Plasma for Gas Treatment

Duc Ba Nguyen^{1,2}, Shirjana Saud³, and Young Sun Mok³

¹ Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 100000, Vietnam
² Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
³ Department of Chemical Engineering, Jeju National University, Jeju 63243, Republic of Korea

* Email: band@plasma.ac.vn (Nguyen)

Acknowledgement

Prof. Won Gyu Lee and Lab members

Prof. Young Sun Mok and Lab members

□Synergetic plasma catalyst

Enhancing dry reforming to syngas by liquid insulator

Honeycomb plasma discharge with water vapor

Application of Honeycomb Discharge for Environmental Applications

□ Plasma Injection method for NO_x removal

1. Synergetic plasma catalyst

Synergetic plasma catalyst for NO_x removal

Chem. Eng. J. 469 (2023) 143977

Synergetic plasma catalyst for NO_x removal

Energy use for: Plasma generation > thermal catalyst

Fig. Removal Efficiency of NO_x with in-plasma catalysis process under various temperature and SEI (a) surface response and (b) contour, and (c) a correlative energy consumption between plasma and thermal catalyst process on the NO_x removal efficiency

Chem. Eng. J. 469 (2023) 143977

Institute of Theoretical and Applied Research, Duy Tan Univers

Temperature (°C)

Synergetic plasma catalyst for acetaldehyde removal

Fig. A Comparison between thermal catalytic activity and plasma for acetaldehyde conversion based SEI consumption (GHSV = 10,600 h⁻¹; water amount =2.5%; C_2H_4O inlet = 5 ppm).

J. Hazard. Mater. 415 (2021) 125608

2. Enhancing dry reforming to syngas by liquid insulator

Issues with conventional DBD

Emission of NO_x and O₃

Fig. Generation of nitrogen oxides (NO and NO₂) by micro-discharge surrounding ground electrode and its pictures under various SEI (frequency = 30 kHz; duty cycle = 20%; total flow rate = 100 mL/min; CH₄/CO₂ = 1/1; gas pump for NO_x analyzer = 1.5 L/min).

Plasma reactor immersed in oil

Enhancing plasma catalyst reaction

Comparison

Table . Comparison of conversion and energy efficiency of plasma/plasma-catalytic reforming of CH_4 with CO_2

Ref.		Conditions		SEI	Flowrate	Co	onv. (%)	EEC (mmol/kJ)	Carrier gas
	Catalyst	Ambient	Voltage waveform	(kJ/L)	(mL/min)	CH ₄	CO ₂		
[44]	Ni/γ-Al ₂ O ₃	Air	Sinusoidal	3.3	250	12	10	0.22	83.68% Ar
[45]	Non	Air	Sinusoidal	176	30	70	30	0.12	Non
[20]	Non	Air	Sinusoidal	18	100	15	6	0.19	Non
	Non	Air	Sinusoidal	144	25	50	30	0.10	Non
	10 wt% Ni/ γ -Al ₂ O ₃	Air	Sinusoidal	60	50	56.4	30.2	0.33	Non
[26]	Non	Air	Quasi-pulse	29	40	66	47	0.81	Non
	$BaFe_{0.5}Nb_{0.5}O_3$	Air	Quasi-pulse	34	40	70	51	0.72	Non
[29]	Non	Air	Sinusoidal	36	25		35	0.20	Non
[46]	Non	Air	Sinusoidal	192	50	50	40	0.10	Non
	Non	Air	Sinusoidal	96	100	30	30	0.13	Non
	La Ni O ₃ /SiO ₂	Air	Sinusoidal	96	100	50	45	0.21	Non
	$La Ni O_3/SiO_2$	Air	Sinusoidal	192	50	70	60	0.14	Non
[42]	Non	Air	Sinusoidal	370	24	74	68	0.08	Non
[21]	Glass	Air	Sinusoidal	6	20	10.5	7.5	0.16	50% He
[28]	Non	Air	Sinusoidal	1.4	120	15	7	0.20	93.75% Ar
[22]	Non	<mark>Oil</mark>	Pulse	<mark>219</mark>	<mark>80</mark>	<mark>69</mark>	<mark>47</mark>	<mark>0.11</mark>	Non
This work	$\frac{5 \text{ wt\% Ni}/\alpha - \text{Al}_2\text{O}_3}{2}$	Oil	Pulse	<mark>52</mark>	<mark>100</mark>	<mark>77</mark>	<mark>67</mark>	<mark>0.58</mark>	Non

Note: Several conversion values estimated from figures in the reference and used to calculate EEC; CH_4/CO_2 in feed of 1/1.

Enhancing plasma/plasma catalyst process by the immersion oil

Int. J. Hydrogen Energy 45 (2020) 18519-18532

III. Honeycomb plasma discharge with water vapor

Challenges in indoor and diesel exhaust gas treatment

Large volume gas requires treatment

Contents water vapor

Diesel exhaust gas

Atmospheric conditions

Role of honeycomb monolith for plasma generation

Fig. Images of plasma discharge with the absence/presence of honeycomb monolith

Role of water content

Fig. Effects of water content in air on (a) discharge power (b) current and impedance. (Feed gas 75 slm air, Electrode gap from monolith: 2mm (high voltage), 0mm (ground electrode), diameter of perforated holes:3 mm)

Honeycomb Plasma Discharge

- ✤ Initial state
- Input parameter : Voltage, flow rate, water content
- * Reactor configuration, d_g , d_g, electrodes
- * Monolith
- * Temperature

29(2021)25016

J. Hazard. Mater. 404(2021)124024

Chem.Eng.J. 401(2020)125970

IV. Application of Honeycomb Discharge for Environmental Applications

NO_x removal

***VOCs removal**

NO_x removal

Environ. Sci. Technol. 55 (2021) 6386-6396

Acetaldehyde Removal

J. Hazard. Mater. 415 (2021) 125608

5-20 ppm Acetaldehyde

Diluted Ethylene Removal

Honeycomb Plasma Reactor for Ethylene Removal

≥ 95% removal efficiency

J. Hazard. Mater. 426 (2022) 127843

V. Injection method for NO_x removal

Ind. Eng. Chem. Res. 61 (2022) 3365-3373 62 (2023) 9595-9606

Gliding arc plasma assisted NOx removal at low temperature

- 1. Using energy for plasma potential better than for heating catalyst
- 2. Immersion of ground electrodes in the liquid insulator enhanced plasma-catalyst performance
- 3. Large atmospheric pressure plasma can be working with honeycomb plasma discharge configuration
- 4. Honeycomb plasma discharge is potential application for indoor treatment
- 5. Injected plasma-catalyst reduced energy consumption for $\ensuremath{\mathsf{NO}_{\mathsf{x}}}$ removal

