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Plasma-related activities at CPPE

Plasma sources
& processes for:

- Gas conversion

- Catalyst synthesis

- Energy storage material

- Regeneration/recycling
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Novel plasma sources
and reactor concepts
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Plasma-related activities at CPPE

Circular Fuels:

Alternative fuels with closed-loop logistic
and utilization solely powered by renewable
energy



• Share of renewables in global electricity 
generation jumped to 29% in 2020, up 
from 27% in 2019. 

• Renewables could produce more than 
half of the world’s electricity by 2035, 
at lower prices than fossil-fuel 
generation.

• Renewable electricity intermittency and 
decentralization add interest to plasma 
processes

Clean electricity opens opportunities for plasma technologies

! Revision by IEA 2022: Renewable capacity
expansion in the next five years will be much 
faster than what was expected just a year ago! 
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• Direct utilization of renewable electricity

• Access to energy levels not otherwise reachable through electrons

• Can perform chemistry under non-equilibrium conditions

• No solvent / dry conversion and synthesis processes

• Fast light-up/turn-down, more compatible with intermittent electricity

• Allows to move away from the traditional bigger + more powerful approach, 
with decentralized on-demand use

Unique properties of plasma technologies
w/r energy transition & decarbonization
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Electric arc furnace (EAF, DRI)
Waste-to-energy (syngas)
Plasma spraying
Plasma pyrolysis
Resource recovery
...

Plasma pyrolysis
Waste-to-energy (syngas)
Plasma electrolysis
Nanocatalyst synthesis
Surface functionalization (wetting)
...

Plasma electrolysis
Nanocatalyst synthesis
Surface functionalization (wetting)
Supercapacitor electrodes
...

Non-thermal gas conversion (e.g. ozone)
Pollution control (e.g. DeNOx, PFAS)
Surface modification
Plasma activation (gas and liquid)
Coatings
Material synthesis (s, l, g)
Plasma-catalysis
...



DRM: CH4+CO2 => 2CO + H2, 123.5 kJ/mol (H2)
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Plasma heating/chemistry: CH4 oxidation



H2 synthesis via CH4 pyrolysis

H2O => H2 + ½ O2, 285 kJ/mol (H2)

CH4+H2O => CO + 3H2, 68 kJ/mol (H2)

CH4 => C + 2H2, 37.5 kJ/mol (H2)

2NH3 => N2 + 3H2, 30.7 kJ/mol (H2)

Electrolysis: ~80 kWh/kg.H2 + Pt/Ir catalysts

Plasma pyrolysis: 10-20 kWh/kg.H2 no-catalyst
750 kg C(s) per ton of CH4…
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Plasma heating: H2 production
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Nanocatalyst synthesis
Pulsed-laser ablation +
Plasma-enhanced CVD

Binder-free RuNx-MWCNT flexible supercapacitors

Well-dispersed (~5nm) NPs on nanostructuresNPs on BNNT paper



Plasma-Catalysis

“Catalysis-based chemical synthesis accounts for 60 percent of today’s chemical 
products and is a factor in 90 percent of current chemical processes.” ACS 1996

Thermocatalytic processes have ruled the chemical industry since the beginning 
of the fossil fuels era

Why adding a plasma?
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 Operation at lower gas temperature, yet high Texc

 Access to more catalyst materials, non-PCM

 Enhanced activity/selectivity

 Synergetic effects?



R. Snoeckx and A. Bogaerts
Chem. Soc. Rev., 2017, 46, 5805 
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Ammonia synthesis catalysts, N2+3H2=>2NH3

With a Langmuir-Hinshelwood (LH) mechanism,
where both reactants are dissociatively adsorbed 
on the surface before any reaction between their
fragments takes place, a dual metal catalyst 
may perform better.
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Bogaerts, A.; Neyts, E. C. Plasma Technology: An Emerging
Technology for Energy Storage. ACS Energy Lett. 2018, 3, 1013−1027.
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Plasma Chem. Plasma Process. (2016) 36:45–72 
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Presented in 2016... Not much has been done since then on dynamic control



P=190 Torr, 573 K, 10% H2-N2 mixture
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P=190 Torr, 573 K, 10% H2-N2 mixture
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P=190 Torr, 573 K, 10% H2-N2 mixture



Plasma source design: Electrical power deposition <=> Plasma chemistry
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Conclusions and perspective 

Plasma-catalysis is a nascent field. Much remains to be done from the 2020 
roadmap. We need to better use the non-equilibrium.

• One needs to pay far more attention to the power delivery <=> plasma 
chemistry relation

• Distributed arrangement for the timely excitation/contact of reactive with 
catalyst?

• In-situ separation or chemical rxn freezing?

• Multi-function catalysts tuned to gas mixtures?

• Sequencing: Use of time- and spatially-distributed excitation?

• For nanocatalysts synthesized by plasma, can we test them in-situ?
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