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Plasma-related activities at CPPE
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Plasma sources
& processes for:

- Gas conversion
- Catalyst synthesis
- Energy storage material

- Regeneration/recycling
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Plasma-related activities at CPPE

Circular Fuels:

Alternative fuels with closed-loop logistic
and utilization solely powered by renewable
energy

Novel plasma sources
\zjnd reactor concepts:/

Theme 3 Theme 4
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Clean electricity opens opportunities for plasma technologies

Electricity generation for access, 2017-2030
749 TWh

By connection type By fuel source

\Other 4%
Coal 7%

Oil 5%
Gas 6%

« Share of renewables in global electricity
generation jumped to 29% in 2020, up
from 27% in 2019.

« Renewables could produce more than
half of the world’s electricity by 2035,
at lower prices than fossil-fuel
generation.

! Revision by IEA 2022: Renewable capacity
expansionin the next five years will be much
faster than what was expected justa year ago!

« Renewable electricity intermittency and
decentralization add interest to plasma
processes

More than half of those who gain access in the
Energy for All Case do so through deceniralised systems




Unique properties of plasma technologies
w/r energy transition & decarbonization

« Direct utilization of renewable electricity

« Access to energy levels not otherwise reachable through electrons

« Can perform chemistry under non-equilibrium conditions

 No solvent / dry conversion and synthesis processes

« Fast light-up/turn-down, more compatible with intermittent electricity

« Allows to move away from the traditional bigger + more powerful approach,
with decentralized on-demand use
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- Most Favorable Option - Intermediate Option - Least Favorable Option
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Electrochemistry

Electric arc furnace (EAF, DRI)
Waste-to-energy (syngas)
Plasma spraying

Plasma pyrolysis

Resource recovery

Plasma pyrolysis
Waste-to-energy (syngas)

Plasma electrolysis

Nanocatalyst synthesis

Surface functionalization (wetting)

Plasma electrolysis

Nanocatalyst synthesis

Surface functionalization (wetting)
Supercapacitor electrodes
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Non-thermal gas conversion (e.g. ozone)
Pollution control (e.g. DeNOx, PFAS)

Surface modification
Plasma activation (gas and liquid)

Coatings

Material synthesis (s, |, g)
Plasma-catalysis
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Plasma heating/chemistry: CH4 oxidation
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DRM: CH4+C02 => 2C0O + H2, 123.5 kJ/mO| (Hz) Plasma-Assisted Reformi"g of Methane

Jiayu Feng, Xin Sun, Zhao Li, Xingguang Hao, Machong Fan,* Ping Ning,* and Kai Li*

Adv. Sci. 2022, 9, 2203221
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H, synthesis via CH, pyrolysis

Hzo => H2 + 1 02, 285 kJ/mOI (Hz)
CH, => C + 2H,, 37.5 k3/mol (H,)

2NH; => N, + 3H,, 30.7 ki/mol (H,)

Electrolysis: ~80 kWh/kg.H, + Pt/Ir catalysts

Plasma pyrolysis: 10-20 kWh/kg.H, no-catalyst
750 kg C(s) per ton of CH,...
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Plasma heating: H, production

Production d’hydrogéne décarboné : la troisiéme voie
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Nanocatalyst synthesis

Pulsed-laser ablation +
Plasma-enhanced CVD
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Plasma-Catalysis

“Catalysis-based chemical synthesis accounts for 60 percent of today’s chemical
products and is a factor in 90 percent of current chemical processes.” ACS 1996

Thermocatalytic processes have ruled the chemical industry since the beginning
of the fossil fuels era

Why adding a plasma? v Operation at lower gas temperature, yet high T,
v' Access to more catalyst materials, non-PCM
v Enhanced activity/selectivity

v' Synergetic effects?
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Plasma catalysis
==== Thermal equilibrium
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Fig. 7. Predicted effect of N, vibrational excitation on the TOFs of NH; synthesis
(plasma-on), compared to those for thermal catalysis (plasma-off). Rates on (211)
surfaces with reaction conditions: 1atm, Tg,s = 473 K, Ty, = 3000 K, conversion = 1%,
The dashed lines are the maximum possible rates for the hydrogenation reactions
according to Sabatier analysis. Lower (negative) values of Ey correspond to catalysts
that bind N* strongly, and high (positive) values of Ey correspond to catalysts that
bind N* weakly. Reproduced with permission from ref. [70]. Copyright 2018,

Springer Nature.

[70] P.Mehta, P. Barboun, F.A. Herrera, J. Kim, P. Rumbach, D.B. Go, J.C. Hicks, W.F.
Schneider, Nat. Catal. 1(2018) 269-275.
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Figure 1. Overview of the key mechanisms and species in the plasma and at the catalytic surface, showing the complexity of plasma
catalysis.

The 2020 plasma catalysis roadmap

Annemie Bogaerts' ©, Xin Tu?(, J Christopher Whitehead’, Gabriele Centi*"©,

Leon Lefferts®®, Olivier Guaitella’ ©, Federico Azzolina-Jury®, Hyun-Ha Kim’©,

Anthony B Murphy'?©, William F Schneider''©, Tomohiro Nozaki'>(, Jason C J. Phys. D: Appl. Phys. 53 (2020) 443001 (51pp)
Hicks!! s Antoine Rousseau’ (), Frederic Thevenet!?©, Ahmed Khacef'4® and Maria

Carreon'
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Fast reaction (radicals)

Temperature
(Te 2T Toa Tia)

‘ Plasma Chem. Plasma Process. (2016) 36:45-72 _J\’

Presented in 2016... Not much has been done since then on dynamic control
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Ammonia generation in Ns pulse and Ns

pulse/RF discharges over a catalytic
surface

Xin Yang®©, Caleb Richards ™ and Igor ¥ Adamovich* &

Monequilibrium Thermmodynamics Labosatory, Department of Mechanical and Aerospace Engineering,
The Ohio State University, Columbus, OH 43210, United States of America

Plasma Sources Sci. Technol. 32 (2023) 064003 (13pp)
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Plasma Sources Sci. Technol. 32 (2023) 064003 (13pp)
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Conclusions and perspective

Plasma-catalysis is a nascent field. Much remains to be done from the 2020
roadmap. We need to better use the non-equilibrium.

One needs to pay far more attention to the power delivery <=> plasma
chemistry relation

Distributed arrangement for the timely excitation/contact of reactive with
catalyst?

In-situ separation or chemical rxn freezing?
Multi-function catalysts tuned to gas mixtures?
Sequencing: Use of time- and spatially-distributed excitation?

For nanocatalysts synthesized by plasma, can we test them in-situ?
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