Plasma Bubbles: A path to Green Chemistry

How electrification became a major tool for fighting climate change

Cyan hydrogen: methane pyrolysis

Power-to-X means using renewable electricity, for example wind power, to create something else ('X')

IOP Publishing Journal XX (XXXX) XXXXXX

Plasma Power-to-X (PP2X): Status and Opportunities for Non-thermal Plasma Technologies

Jing Sun¹, Zhongping Qu¹, Yuting Gao¹, Tianyu Li¹, Tianqi Zhang², Rusen Zhou^{2,23}, Dingxin Liu¹, Xin Tu³, Guoxing Chen⁴, Volker Brüser⁵, Klaus-Dieter Weltmann⁵, Danhua Mei⁶, Zhi Fang⁶, Ana Borras⁷, Angel Barranco⁷, Shaojun Xu⁸, Chuanlong Ma⁹, Liguang Dou¹⁰, Shuai Zhang¹⁰, Tao Shao¹⁰, Guangliang Chen¹¹, Dawei Liu¹², Xinpei Lu¹², Zheng Bo¹³, Wei-Hung Chiang¹⁴, Krasimir Vasilev¹⁵, Michael Keidar¹⁶, Anton Nikiforov¹⁷, Ali Rouhollah Jalili¹⁸, Patrick J. Cullen^{2,18}, Liming Dai¹⁹, Volker Hessel²⁰, Annemie Bogaerts²¹, Anthony B. Murphy²², Renwu Zhou^{1*}, Kostya (Ken) Ostrikov²³

¹ State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China

² School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia

³ Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK

⁴ Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Brentanostraße 2a, 63755 Alzenau, Germany

⁵ Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V., 17489 Greifswald, Germany

⁶ College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China

⁷ Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville, CSIC-US, C/Americo Vespucio 49, 41092, Seville, Spain

⁸ School of Electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China

⁹ Catalytic and Plasma Process Engineering, Department of Chemical Engineering, McGill University,

PLASMA BUBBLES

HISTORY

Birkeland–Eyde (1903): used electrical arcs (thermal plasma) to react atmospheric nitrogen (N_2) with oxygen (O_2), ultimately producing nitric acid (HNO₃) with water.

RJUKAN FAB. ANL. I. GOG. OVNSHUS.

A hybrid plasma electrocatalytic process for sustainable ammonia production. *Energy & Environmental Science*, (2021) *14*(2), 865-872.

MARKET LEADING PERFORMANCE

We are on track to combining world leading energy efficiency & production rates

Graph: Zero-emission Direct Ammonia Synthesis Performance, Source: PlasmaLeap

NITRATES / AMMONIA MODULAR BASE UNIT

OUR COMMERCIAL ROADMAP

2024 Decentralized Production On-Farm Nitrate Units 100-200t p.a.

2026 Semi-centralized Production Regional Ammonia Hubs 1-5 Kt p.a.

2030

Centralized Production Large-scale Ammonia Plants 500kt - 1Mt+ p.a.

eFuels

 CO_2

HYDROCARBON eFUELS

× 11

Plasma chemistry modelling

• Provide information on important pathway to utilize the reactants and produce target products through sensitivity analysis

on different reactions in gas phase, on surface and water volume

Illustration on possible pathway of plasma synthesis of NH_3 in N_2/H_2O system Hong et al. Green Chem., (2022) 24, 7458

Sun et al. Chem. Eng. J. (2023) 469, 143841

Plasma fluid modelling

• Aim to extend to Multi-phase, Multi-physics computational study to improve understanding on the actual complex nature of plasma interaction

Thank you