(Microwave and RF) Plasma Enhanced Synthesis of Nanomaterials

Mohan Jacob

College of Science and Engineering James Cook University Townsville, Australia

Contributors:

Adeel Zafar Michael Kamel Surjith Alancherry Ahmad Aljumaili Scarlett Allende

Overview

Plasma Sources (in the context of nanomaterial synthesis) Microwave Plasma (Downstream Microwave Plasma)

- a. Properties
- b. Applications
- RF Plasma
 - a. Properties
 - b. Applications
- Microwave Assisted Pyrolysis

Conclusions

Plasma processing

Every process using the plasma is a complex interaction between

- gas phase Chemistry
- plasma Physics/conditions
- surface phase Chemistry

Plasma Sources for PECVD and Atmospheric Pressure Plasma

Microwave (~1 - 20 GHz)

• Microwave Generator (Magnetron or Solid State)

Radio Frequency (~0.1 - 100 MHz)

- Capacitively Coupled RF Plasma
- Inductively Coupled RF Plasma (ICP)
- Helicon (Magnetically enhanced wave coupling)

Synthesis of nanomaterials from sustainable sources

Microwave Plasma: Synthesis of graphene Bottom-up method for graphene synthesis

- Substrate-free
- **Process at atmospheric pressure**
- No pre-heating
- No need of hydrogen gas
- Scalable

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

- High production rate
- Short processing time (few seconds)
- Energy intensive
- Requires precise control of parameters

Microwave Plasma: Synthesis of graphene

- Tea Tree Oil Graphene
- Tangerine (orange peel) oil —— Graphene

Microwave Plasma: Synthesis of graphene

From Tea Tree Oil (TTO)

Microwave Plasma Graphene: TTO

Raman

Microwave Plasma Graphene: TTO

Microwave Plasma Graphene: Rate of production

Precursor	Microwave power (W)	Precursor flow rate (sccm)	I _D /I _G	Number of layers	Production rate (mg/min)	Ref.
Ethanol	250	0.3	_	Mono-and bi- layers	2	[10, 25]
Ethanol	900	0.5 - 3.5	-	Few layers	2	[48]
Ethanol	200	0.0036	0.6	Multilayers	0.07	[49]
Ethanol	300	0.33	0.24	Few layers	1.33	[24]
Ethanol	300	0.048	0.35	Few to multilayers	1.45	[50]
Methane	1000	2 - 8	0.62	Multilayers	-	[30]
Methane	1200-1400	-	1.57 or 1.77	Few to multilayers	_	[51]
Tea tree oil	200	0.3	0.83	Multilayers	1.57	This work

Zafar, M. Adeel, et al. "Plasma-Based Synthesis of Freestanding Graphene from a Natural Resource for Sensing Application." Advanced Materials Interfaces 10.11 (2023): 2202399.

Microwave Plasma: graphene sensor for diuron detection

- Prolong use of diuron herbicide contaminate crops and water
- Toxic for humans and aquatic organisms
- Genotoxic and Interfere hormones

Zafar, M. Adeel, et al. "Plasma-Based Synthesis of Freestanding Graphene from a Natural Resource for Sensing Application." Advanced Materials Interfaces 10.11 (2023): 2202399.

Microwave Plasma: graphene sensor for diuron detection

Differential pulse voltammetry (DPV) curves at graphene/GCE for different concentrations (20, 80, 120, 180, 300, 400, 500, 600, 700, 800, 900, 1000 μ M) of diuron in 0.1 M PBS

Rapid and chemical-free synthesis of graphene-Ag nanocomposite using plasma

Optical emission spectroscopy

SEM images

TEM images (0.1 M AgNO₃ sample)

Ag metal 368.2 and 374.2 eV

Microwave Plasma: graphene-Ag sensor for methyl paraben

Microwave Plasma: graphene-Ag sensor for methyl paraben

DPV curves of different concentrations of MP (20, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260 μ M) in 0.1 M PBS (pH 7) **LOD** = **2.5** μ M **DPV** curves of graphene-Ag nanocomposite/SPE in 0.1 M Phosphate Buffer Solution PBS (pH 7) and river water (pH 6.92) containing 20 µM

Synthesis of graphene from tangerine using Microwave Plasma

Microwave Plasma: Synthesis of graphene from tangerine

Zafar, M. Adeel, et al. "Expeditious and Eco-friendly fabrication of Graphene-Ag nanocomposite for methyl paraben sensing." Applied Surface Science 638 (2023): 158006. IAEA Plasma Meeting 2023 23

Microwave Plasma: Tangerine based graphene for vapour sensor

Synthesis of nitrogen-doped graphene oxide using Microwave Plasma in a single step

Zafar, M. A., Varghese, O. K., Robles Hernandez, F. C., Liu, Y., & Jacob, M. V. (2022). Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Applied Materials & Interfaces.

Zafar, M. A., Varghese, O. K., Robles Hernandez, F. C., Liu, Y., & Jacob, M. V. (2022). Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline
at Ambient Conditions. ACS Applied Materials & Interfaces.IAEA Plasma Meeting 2023

- Nitrogen-doped graphene oxide (N-GO) is formed in a single step. Oxygen comes from atmosphere due to ambient air synthesis
- Very low power (80 W) only needed to breakdown the precursor and form N-GO
- Production rate is ~2 mg/min

Zafar, M. A., Varghese, O. K., Robles Hernandez, F. C., Liu, Y., & Jacob, M. V. (2022). Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Applied Materials & Interfaces.

Water purification application

- a) schematic presentation of the N-GOcoated-PA membrane,b) water contact angle of the control and
- c) WCA of N-GO-coated-PA membranesd) higher flux recovery ratio against the number of water filtration cycles.

Microscopic images showing the degree of algal growth on (a) N-GO-coated and (b) control polyamide membranes

Zafar, M. A., Varghese, O. K., Robles Hernandez, F. C., Liu, Y., & Jacob, M. V. (2022). Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Applied Materials & Interfaces. IAEA Plasma Meeting 2023

Microwave Plasma: N-Graphene Oxide Oxalic Acid Sensor

Electrochemical sensor: oxalic acid detection

Amperometric response of the Ag-Nps/N-GO/GCE in stirred 0.1 M PBS with sequential injections of OA at 1.2 V potential (b) Calibration curve showing OA current response against its concentration.

> Amperometric response of Ag-Nps/N-GO/GCE towards OA (50 μ M), ascorbic acid $(100 \,\mu\text{M})$, glucose $(50 \,\mu\text{M})$ and uric acid $(100 \,\mu\text{M})$ in 0.1 M PBS at 1.2 V

IAEA Plasma Meeting 2023 Time (sec)

Zafar, M. A., Varghese, O. K., Robles Hernandez, F. C., Liu, Y., & Jacob, M. V. (2022). Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Applied Materials & Interfaces.

Our Conventional VS. method methods Ambient Processing air environment HEATING Single precursor, no Hazardous & Precursor PLAMMABLE GAS toxic gases expensive materials gases Processing Long Short duration Process Simple Complex (single step) (multi-staged) Design B **80 W** 2 kW (90 % **Expensive** cheaper)

Comparison

Zafar, M. A., Varghese, O. K., Robles Hernandez, F. C., Liu, Y., & Jacob, M. V. (2022). Single-Step Synthesis of Nitrogen-Doped Graphene Oxide from Aniline at Ambient Conditions. ACS Applied Materials & Interfaces.

RF Plasma-Enhanced Chemical Vapour Deposition

- The RF signal is used to setup a time varying electric field between the plasma and the electrode
- This electric field accelerates the electrons in and out of the plasma
- The electrons gain energy and ionize the local gas •

Can achieve mono layer graphene **Requires low temperature**

- Requires precise parameters control
- Pre-heating

 \checkmark

 \checkmark

Х

X

- Low productivity
- Substrate is must
- Hard to transfer
- Not scalable

RF Plasma: Catalyst Free Graphene Nano-onions Fabrication

Surjith Alancherry et al, Applied Materials and Interface, 2020, 2(26):29594-29604, Fabrication of Nano-Onion-Structured Graphene Films from Citrus sinensis Extract

RF Plasma: Cyclic Voltammetry of Graphene

Capacitance = 140μ F per cm²

630 F per device

Surjith Alancherry et al, Applied Materials and Interface, 2020, 2(26):29594-29604, Fabrication of Nano-Onion-Structured Graphene Films from Citrus sinensis Extract

RF Plasma: J-V characteristics for graphene-based OPVs

Kamel, Michael SA, Michael Oelgemöller, and Mohan V. Jacob. "Sustainable plasma polymer encapsulation materials for organic solar cells." Journal of Materials Chemistry A 10.9 (2022): 4683-4694.

RF Plasma: Effect of pp-encapsulation on device stability

RF Plasma: Graphene: Antibacterial Properties

- An excellent antibacterial material but fabrication temperature may limit the applications
- Graphene can also be used as a compound with silver nanoparticles to increase antibacterial properties even further.

Al-Jumaili, Ahmed, et al. "Bactericidal vertically aligned graphene networks derived from renewable precursor." Carbon Trends 7 (2022): 100157.

Microwave Assisted Pyrolysis for Waste to Resources

By-products

Bio-gas (CO₂, CH₄, H₂, N₂) Bio-oil Bio-char (rich in Carbon)

Microwave Assisted Pyrolysis: Waste to Resources

Allende, Scarlett, Graham Brodie, and Mohan V. Jacob. "Energy recovery from sugarcane bagasse under varying microwave-assisted pyrolysis conditions." Bioresource Technology Reports 20 (2022): 101283.

Conclusions

Plasma for nanomaterials	Plasma (RF and Microwave) is excellent tool for the sustainable synthesis of Graphene or nanomaterials
Past vs present	Graphene synthesis is complex and time-consuming, involving high temperatures, vacuum requirements, and material transfer etc. Plasma based synthesis simplified and accelerated this process
Future	Microwave plasma could simplify large-scale graphene production and could also covert waste into resources
Applications	Plasma could assist the development of sustainable materials for electronics, sensors, storage, membrane, biomedical applications

Email: Mohan.Jacob@jcu.edu.au

