

Methane as a feedstock in plasma processes

Necip B. Uner

Asst. Prof., Chemical Engineering, Middle East Technical University, Ankara, Turkey.

Adj. Prof., Nuclear Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, U.S.A.

21/09/2023

IAEA Technical Meeting on Emerging Applications of Plasma Science and Technology - Vienna

1

Methane – CH_4

- Steam-methane reforming $CH_4 + H_2O \square CO + 3H_2,$ $\Delta H_r = 206 \text{ kj/mol}$ $CO + H_2O \square CO_2 + H_2,$ $\Delta H_r = -41 \text{ kj/mol}$
 - Produces 2-3% of CO₂ emissions.
- Partial oxidation into syngas and then into methanol, formaldehyde, formic acid etc.
- Chlorination, fluorination

CH_4 and H_2 and NH_3

- CH₄ is used to make H₂.
- H_2 is used to NH_3 , which is
 - The major starting feedstock in nitrogen chemistry.
 - Starting molecule for nitrogen-based fertilizers (NH₄NO₃, CO(NH₂)₂).
 - Easily transportable and storable fuel.

"Less than 0.1% of global dedicated hydrogen production today comes from water electrolysis." [2]

Cutting down on CO₂

- Clean hydrogen for the chemical and metallurgical industry.
- Clean ammonia as the chemical energy carrier (requires clean hydrogen).

3) Electric cars for transport.

Industrial work – Plasma pyrolysis

- Kvaerner* Karbomont Plant, 1998-2003.
- Atlantic Hydrogen New Brunswick pilot plant, 2015-2016.
- Monolith Inc. Nebraska plant, 2020-...

H₂ or C? Which one is valuable?

- Theoretical methane pyrolysis efficiency:
 5.2 kWh/kg H₂
- Kvaerner [1]: 15 kWh/kg H₂
- Fulcheri and coworkers [2]: 14 kWh/kg H₂
- Natural gas feed increases energy efficiency: as low as 11.8 kWh/kgH₂ according to Kvaerner [1]

[1] A.R. De Costa Labanca, *Int. J. Hydrogen Energy*, 45, **2020**.
[2] L. Fulcher and Y Schwob, *Int. J. Hydrogen Energy*, 20, **1995**.

H₂ or C? Which one is valuable?

- Pure methane gas (Ankara Gaz): 8000 TL*
 - 50 L cylinder, grade 2.5, 200 bar
 - Total moles: 406
 - Unit price: 0.72 \$/mol CH₄
- Pure hydrogen gas (Ankara Gaz): 7250 TL
 - 50 L cylinder, grade 5.0, 200 bar
 - Total moles : 406
 - Unit price: 0.66 \$/mol H₂

Gain with full conversion through methane pyrolysis ($CH_4 \rightarrow 2H_2 + C$) (excluding carbon value): **0.6 \$/mol CH**₄ (or 0.05 \$/g CH₄ carbon)

A.R. De Costa Labanca, *Int. J. Hydrog. Energy*, 45, **2020**. *Gas costs only include refill.

Carbon's worth in small scale

Carbon materials and their prices. Materials were picked from the online catalog of Sigma-Aldrich'in on 24/08/2023. Only the materials that are available to Türkiye and the ones that consist of predominanyl carbon were listed. Product IDs were taken from the website of Sigma-Aldrich. Euro/Dollar parity was 1.08.

Material	Type/Property	Product ID	Amount (g)	Price (€)	Unit Price (\$/g)
Graphite	Anode powder	907154	500	94.9	0.20
	Powder, <20 μm	282863	1000	75.1	0.08
	flakes	332461	2500	125	0.05
	Powder, <45 μm, >99.95%	496596	113.4	387	3.67
	Nanopowder, Al, Ti, Fe, Ni, Cu & Zn content lower than 100 ppm	699640	25	685	29.6*
Graphene	Powder, electrical conductivity >10 ³ S/m	900561	0.5	495	1069
	Nanoplates	900407	250	260	1.12**
Graphene oxide	15-20 plates, 4-10% edge oxidation	796034	1	186	201
Nanodiamond	Nanopowder, <10 nm, >97% metal purity	636428	5	662	143
	Functionalized, 65 nm	901770	1	481	520

*The unit price decreases to \$25.6 when metal impurity increases to 500 ppm. (~15%)

** Decreases when surface area decreases. Graphene with lowest surface area on Sigma Aldrich costs \$1.01 per gram. (~10%)

Where will the carbon go? An example

Most valuable materials → Electronics, composite materials Least valuble materials → Agriculture (*biochar*)

- Total of ~1.5 billion cars in the world.
- Considering the massive CO₂ emission due to personal cars, most of them will be need to be replaced with electric cars.
- Each electric car has **50-100 kg of graphite** in its Li-ion battery as the anode material.
- That makes **113 Mtons**.
- Taking the capacity of the Monolith plant as 250 tons/day, to provide this much carbon in 20 years, we need 61 more plants.

Academic work – Gas yield

D.H. Lee et al, *Plasma Chem Plasma Process*, 33, **2013**.

Academic work – Gas yield

Kado et al, *Catal. Today*, 89, **2004**.

Academic work – Carbon yield

- Microwave plasma graphene [1]
- Microwave plasma graphene and graphite particles [2]
- Nonthermal plasma particles & graphene sheets [3]
- Thermal plasma carbon particles [4]
- Gliding arc graphene [5]

[1] E. Tatarova et al, *Appl. Phys. Lett*, 103, **2013**.
[2] M. Singh et al, *Carbon*, 143, **2019**.
[3] C Wang et al, *Chem. Eng. Sci.*, 227, **2020**.
[4] F. Fabry, G. Flamant, L. Fulcheri, *Chem. Eng. Sci*, 56, **2001**.

[5] D. Li et al, *Fuller. Nanotub.*, 28, **2020**.

Product yield
 Product
 characterization
 according to standards
 Absence of inert
 gases 14

CH₄ in a plasma

Cracking the code of CH₄

- 1) CH_3 , CH_2 abundant \rightarrow oligomerization (C_2H_6 , C_2H_4) and coupling into larger chain paraffins and olefins (C_xH_y).
- 2) CH abundant \rightarrow oligomerization into acetylene (C₂H₂).
- 3) Complete cracking into $C \rightarrow$ highest hidrogen yield and carbon black.

Pyrolysis – Metrics - I

17

Pyrolysis – Metrics - II

Methane Flow Rate vs Energy Yield

• Pure methane inlet • Mixture inlet • Diffrent Plasma Reactor

'Vibrational-translational nonequilibrium is negligible. Thermal conversion plays a major role.'

S. Heijkers, M. Aghaei and A. Bogaerts, J. Phys. Chem. C, 124, 2020.

Thermal + nonthermal processing

CH₄ conversion - Thermodynamics

Quenching and the spatial afterglow

N.H. Abuyazid, N.B. Uner, S.M. Peyres & R.M. Sankaran, *Nat. Comms.*, **2023** (to be published)

A possible scenario on H₂ production

What do we need?

Acknowledgements

