

IAEA Technical Meeting on Emerging Applications of Plasma Science & Technology

Non-thermal plasma catalytic dry reforming of methane over Ni-Co₃O₄ supported modified-Titania catalysts: Effect of process conditions on syngas production and DFT analysis

Professor Ir Dr Nor Aishah Saidina Amin Head Chemical Reaction Engineering Group Faculty of Chemical Engineering Universiti Teknologi Malaysia

Research Background

Research Background

Initiatives to tackle greenhouse gases (CO₂-CH₄)

IAEA aims to reduce greenhouse gas emissions UNDP is committed to 50% carbon footprint reduction by 2030 Paris Agreement ZER()

Solution

Non-Thermal Plasma Technology for catalytic dry reforming of CH₄ to produce syngas (H₂-CO)

Global Syngas Demand & Market Size

Estimated Lab Scale Yearly Total Revenue

\$15 M

CO

CO Production Yearly = 96 kg

Output/operation hrs: 3000ml/hour, 8h/day, 20 days/month Total CO per month: 9.6 I Parameter: 60 sccm FFR, 1.5 cm ID & 1 kW power Price per 50 liter = \$ 6586.39

Hydrogen Production Yearly = 407.7 kg

Output/operation hrs: 3000ml/hour, 8h/day, 20 days/month Total H₂ per month in liter = 480 I Total H₂ per year in liter = 5760 I Price per kg = 21.28 \$8,676 Hydrogen

Literature Review

Feed	Catalyst and Parameters	Product	Reference	
Steam–CH ₄ , CO ₂ gas mixture	Catalyst = Cu/ZnO/Al ₂ O ₃ /MgO Plasma power = 20 W, Feed flow: Steam = 25 ml/min, S/C = 4.5, catalyst = 200 mg	H ₂ = 88 % CO = 25 % CO2 = 65 %	(Geng et al., 2022)	
Water–CH₄ gas mixture	Catalyst = Cu/CeO2 Plasma SIE = 19.8 J/L, Feed flow: Steam = 0.5 ml/min, CH ₄ = 50 ml/min, catalyst = 1 g	H2 = 248.7 CO = 11.25 (μmolg ⁻¹ h ⁻¹)	(Bajpai et al., 2023)	
CH₄, CO₂ – Ar gas mixture	Catalyst = Ni/Al ₂ O ₃ Plasma power = 3.9 W, Feed flow = 60 ml/min, CH ₄ /CO ₂ = 1, catalyst = 12 pallets	H ₂ = 42 % CO = 34 %	(Stanley et al., 2023)	
CH ₄ - CO ₂ gas mixture	Catalyst = Ni/CeO2/C Plasma power = 40 W, Feed flow: Feed flow = 50 ml/min, CH ₄ /CO ₂ = 1	H ₂ = 50.0 % CO = 53.2 %	(Wang et al., 2020)	
CH ₄ - CO ₂ gas mixture	Catalyst = Ni/CeZrO ₂ Plasma power = 200 W, Feed flow: Feed flow = 50 ml/min , CH ₄ /CO ₂ = 1, catalyst = 0.5 g	H2/CO = 0.98	(Dai et al., 2021)	

Background

Why Ni-Co₃O₄/TiO₂?

Why TiO₂ as Catalyst Support

- Environmental-friendly, nontoxic and inexpensive semiconductor material.
- Mainly used in photo-catalysis reaction. However, lack of studies using TiO_2 as catalyst support in other applications including Dry reforming of methane (DRM).
- Advantages of TiO₂ as a catalyst support:
 - Acts as active metal support
 - Also acts as the reducible oxide (catalyst).
 - Provides unique electronic interactions between the metal & support.

Why Ni active metal and Cobalt as Catalyst Promoter

- Nickel (Ni) \rightarrow abundant, commercially used catalyst & active metal in thermal/nonthermal applications
- However, Ni suffers from instability and deactivation.
- To tackle these problems, noble metals like Pt, La, Au, and Ag can be used as catalyst promoters, but these expensive and rare metals makes the catalyst commercially infeasible.
- Cobalt (Co) \rightarrow as catalyst promoter, Co can increase stability and activity of Ni.

 \rightarrow Inexpensive as compared to noble and rare earth metals

Methodology

Alumina tube packed-bed DBD dimensions: Length = 40 cm, ID = 10 cm, OD = 12 cm

High voltage (HV) positive electrode: steel tube = 4 mm diameter

Ground electrode: stainless-steel mesh = 20 cm

Reaction Conditions:

catalyst loading (0.3 g), total feed flow rate (20 ml min-1), CH_4/CO_2 feed ratio (1/1), GHSV (1200h-1) and SIE (300 J ml-1)

Experimental Setup

Schematics of Catalyst Preparation

10% Ni - 5% Co₃O₄/TiO₂ NRs

Catalyst Characterization

XRD profiles of various catalysts:

• TiO_2 NR catalyst has diffraction peaks at $2\theta = 25.4^{\circ}$ (101), 38.0° (004), 48.1° (200), 53.0° (105), 55.2° (211) & 62.9° (204), corresponds to tetragonal TiO₂ in pure anatase phase

 Co_3O_4 nanocubes detected at $2\theta = 30.0^{\circ}$ (220), 36.9° (222), 44.4° (400), 59.4° (511) & 65.4° (440)

Rhombohedral NiO phase was detected for both $10\%Ni/TiO_2$ NR & $10\%Ni-5\%Co_3O_4/TiO_2$ catalysts at $2\theta = 37.2^{\circ}$ (101) & 43.3° (012)

Catalyst Characterization

(a) H_2 -TPR; and (b) CO_2 -TPD profiles; for 10%Ni/TiO₂ NR and 10%Ni-5%Co₃O₄/TiO₂ NR catalysts:

- 10%Ni-5%Co₃O₄/TiO₂ NR displays higher H₂ consumption of 2.288 mmol g⁻¹ than the 10%Ni/TiO₂ NR (1.269 mmol g⁻¹) catalyst.
- Higher basic sites of 243.8 μmol g⁻¹ are acquired for 10%Ni-5%Co₃O₄/TiO₂ NR than the 10%Ni/TiO₂ which confirms the enhanced basicity by synergistic effect of supported TiO₂ NR catalyst.

Catalyst characterization

5 4 .		Catalysts	S _{BET} (m ² g ⁻¹)	V _t (cm ³ g ⁻¹)	V ₂₋₅₀ , BJH (cm ³ g ⁻¹)	V _{0.5-2.0} , t-plot (cm ³ g ⁻¹)	V _{0.2-0.5} , MP (cm ³ g ⁻¹)	APD (nm)
		10%Ni/TiO ₂ MP	8.3	0.079	0.074	0.004	0.002	38.0
ed (mn		10%Ni/TiO ₂ NR	25.4	0.160	0.145	0.012	-	25.2
dsorb	2	10%Ni-	23.1	0.122	0.111	0.014	0.003	21.0
N ₂ ac	a start a start a	5%Co ₃ O ₄ -TiO ₂						
		NR						
		BET analys	sisofsu	rface pi	roperties	of Ni/Co su	pported 1	ΓiO ₂ NR
	Relative pressure (P/P_0)	MP catalys	sts.		-			_

N₂ adsorption-desorption isotherm plots for 10%Ni/TiO₂ NR, 10%Ni/TiO₂ MP & 10%Ni-5%Co₃O₄/TiO₂ NR catalysts:

• All catalysts exhibit mesoporous material with Type III and H3 hysteresis loop isotherm ascribed to the steep increase at high relative pressure ($P/P_0 > 0.90$) with capillary condensation steps at P/P_0 range of 0.7–0.9 indicating the presence of mesopores.

Catalyst characterization

XPS analysis of 10%Ni-5%Co₃O₄/TiO₂ NR catalyst:

- X-ray spectrum shows 2 valence states of Ni i.e., Ni²⁺ & Ni⁰.
- Co spectrum reveals 2 oxidation states corresponding to Co²⁺ & Co³⁺.
- Ti peak confirms that the main valence state is Ti⁴⁺.

XPS analysis of 10%Ni-5%Co₃O₄/TiO₂ NR catalyst; High resolution spectrum of (a) Ni 2p; (b) Co 2p; (c) Ti 2p; (d) O1s; and (e) C1s.:

Catalyst characterization

(a-e) HRTEM micrographs with different magnifications and their respective d-spacing; and (f) selected area (electron) diffraction (SAED) pattern, for the 10%Ni-5%Co₃O₄/TiO₂ NR:

- Composite catalyst exhibit NR morphology, could be ascribed to TiO₂ covered with Ni nanoparticles & Co₃O₄ nanocubes.
- SAED pattern establishes presence of Co₃O₄ nanocubes.

Catalyst characterization

TGA results of $10\%Ni/TiO_2$ NR & $10\%Ni-5\%Co_3O_4/TiO_2$ NR spent catalysts; (inset) carbon deposition after DBD plasma DRM experiment.:

• Higher amount of total weight loss was recorded for the spent catalyst of $10\%Ni/TiO_2$ NR as compared to the $10\%Ni-5\%Co_3O_4/TiO_2NR$.

 Lower carbon deposition detected for spent 10%Ni-5%Co₃O₄/TiO₂ NR with 1.53 mg g⁻¹ catalyst inferred the high resistance behavior towards carbon formation.

Screening of Ni/Co supported TiO₂ NR/MP catalysts

•

Effect of different operating parameters

Effect of specific input energy:

Increasing SIE from 100 J ml⁻¹ to 300 J ml⁻¹ leads to higher conversion of reactants attributed to the increment of electric field & plasma induced **energetic electron density** in the plasma discharge zone.

 X_{CH4} is relatively higher than X_{CO2} due to the lesser energy required for C - H bond cleavage & average threshold energy for bond partition of CH₄ at 4.5 eV & 10 eV, respectively, compared to C - O bond cleavage & average threshold energy for CO₂ of 5.5 eV & 11.9 eV

Effect of different operating parameters

Effect of GHSV:

- Drop in X_{CH4} & X_{CO2} as the GHSV increases indicates the effect of the **reduced contact time** inducing lesser interaction between the active species & reactants.
- Highest X_{CH4} & X_{CO2} attained at lower GHSV of 1200 h⁻¹ with 86.4% & 84.9%, respectively, with the highest H₂ & CO yield obtained at 43.1% & 42.0%, respectively.

H₂/CO ratio near unity with the highest energy efficiency of 0.131 mmol kJ⁻¹ achieved at the lower GHSV.

Effect of different operating parameters

Effect of feed ratio:

- $X_{CH4} \& X_{CO2}$ decrease as the feed ratio increase.
- Highest X_{CO2} (85%) & X_{CH4} (86.4%) is recorded at a feed ratio of one.
- Syngas ratio of **1.01** & EE of **0.13** mmol kJ⁻¹ is observed the highest at a feed ratio of one.
- In summary the plasma DRM efficiency can be optimized by manipulating the CH₄/CO₂ ratio in the feed stream.

Comparison of catalytic performance

1										
Catalysts	Loading (g)	Power (W)	Flow rate (ml min ⁻ ¹)	SIE (J ml ⁻¹)	Xco2 (%)	Хсн4 (%)	Sco (%)	S _{H2} (%)	H ₂ /CO ratio	EE (mmol kJ ⁻¹)
10%Ni-5%Co3O4/TiO2 NR (This work)	0.3	100	20	300	85	86	49.	50.1	1.01	0.131
10%Ni/Al ₂ O ₃ -MgO (Khoja <i>et al.</i> , 2018)	0.5	100	20	300	73	74	48	47	0.98	0.117
Ni–Fe/SiO ₂ (Zheng et al., 2015a)	0.2	160	40	-	68.6	60.5	86.7	74.3	0.91	0.120
Ni-La ₂ O ₃ /SiO ₂ (Zheng et al., 2015b)		160	50	-	56.8	66.8	83.1	72.9	-	0.144
15%Ni/TiO2 (Ray <i>et al.</i> , 2019)	-	24	30	200	10	20	53	44	1.08	-
15Ni/Al ₂ O ₃ (Ray <i>et al.</i> , 2019)	-	24	30	200	11	25	39	61	0.89	-
12%Cu-Ni/Al ₂ O ₃ (Zhang et al., 2010)	0.1	60	60	60	30	56	52	31	0.6	-
26%Ni/Al ₂ O3 (Tu <i>et al.</i> , 2011)	1.8	97	50	166	30.2	56.4	52.4	31	0.59	-
15Ni/ZSM (Ray et al., 2019)	-	24	30	200	11	18	49	41	1.02	-

Comparison of 10%Ni-5%Co₃O₄/TiO₂ NR catalyst for DBD plasma-catalytic DRM with previous literature:

- Reactant conversion in this study has significantly improved as compared to other catalyst packings cited from previous literature.
- Enhanced product selectivity & H₂/CO ratio unity in this study can also be observed as compared to previous literature.
 EE of 10%Ni-5%Co₃O₄/TiO₂ NR catalyst is also recorded better & comparable with previous reports.

Data not available

Catalyst Stability Test

Stabilitytestof10%Ni- $5\%Co_3O_4/TiO_2$ NR catalyst in 10 htime-on-stream:•Highcatalyticstability

observed with 85% X_{co2} & 85.9 X_{CH4}.

 Selectivity of syngas remained constant at ~49% CO & ~ 50% H₂.
 Stability experiment of 10%Ni-5%Co₃O₄/TiO₂ NR in agreement with characterization outcomes of XPS & H2-TPR for the role of reduced active metal & strong metal-support interaction.

Reaction mechanism

Possible reactions on plasmaassisted catalyst surface for DRM:

- Input energy is provided by the highly oscillating charge particles (electrons) & radicals produced under plasma conditions.
- The CO* and H* radicals react with excited plasma-generated electrons to produce syngas.
- CH₂* and CH₃* radical species react with excited electrons under the presence of plasma & catalyst to higher hydrocarbons such as C₂H₆.

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface: DFT

Structural stability in interaction between Co₄, Ni₄, and Co₂-Ni₂ cluster on Anatase-TiO₂ surface.

- Initial configuration of metal cluster (MC) placement on a-TiO₂ surface illustrated in Figure (a) - side view and (b) - top view.
- Optimized geometries, binding energy, and bond lengths illustrated in Figure (c)-(e).

- Stable MC configuration: A1/B1 binds to surface oxygen, A2/B2 to surface Ti. (Consistent with Prior Metal Cluster Studies on Metal Oxides).
- MC stability: $Co_2 Ni_2/a TiO_2$ exhibits highest binding energy. $(E_{bind} = -9.61 \text{ eV})$
- Enhanced Co₂-Ni₂ cluster stability suggests potential for prolonged catalytic activity through Co-Ni synergy.

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface: DFT

Single H atom adsorption and stability on MC/a-TiO₂

- Four H adsorption sites examined on MC/a-TiO₂ surface: top sites of A1 and A2 (t), hollow sites (h), and bridge sites (b) see Figure (x).
- Most stable adsorption site illustrated in Figure (a) – (g)
- Co₄/a-TiO₂: H prefers h sites (Figure a) and b sites (Figure b).
 - Ni₄/a-TiO₂: H favors h sites (Figure c) and b sites (Figure d).
 - Co₂-Ni₂/a-TiO₂: H prefers on h sites (Figure e), b sites (Figure f) and t sites (Figure g).

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface:DFT

Single H atom adsorption and stability on MC/a-TiO₂

- Adsorption energy of H atom on Co₄, Ni₄, and Co₂-Ni₂ supported on a-TiO₂ surface at preferable active sites (*h*, *b*, or *t*) see figure.
- H atom thermodynamically most stable on $Co_2-Ni_2/a-TiO_2$ at the *b* Site (-2.86 eV).
- Co₂-Ni₂/a-TiO₂ catalyst offers more active sites for H atom adsorption (*h*, *b*, and *t* sites).

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface: DFT

Reaction pathway for the associative desorption of H₂ on MC/a-TiO₂ catalysts :

- Proposed two-step H₂ desorption pathway reaction – see figure.
- Initial placement of two preabsorbed H atoms at adjacent bridge sites.
 - lst-step reaction (L1-L2): These H atoms diffuse and form an H_2^* radical on surface. 2^{nd} -step reaction (L2-L3): These adsorbed H_2 undergoes desorption.

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface: DFT

Reaction pathway for the associative desorption of H_2 on MC/a-TiO₂ catalysts :

- Enthalpy of reaction is endothermic for all $MC/a-TiO_2$ -see figure (left).
- E_a for 1st-step, 2nd-step, overall reaction is summarized see figure (right)
- 1^{st} -step reaction (L1-L2): $Co_2 Ni_2/a TiO_2$ offering lowest $E_a(0.60 \text{ eV})$.
- 2^{nd} -step reaction (L2-L3): Co_2 -Ni₂/a-TiO₂ exhibits highest E_a (0.72 eV)
- $Co_4/a-TiO_2$ has the lowest overall E_a for associative H_2 desorption. (E_a =1.14 eV)

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface:DFT

Reaction pathway for the associative desorption of H_2 on MC/a-TiO₂ catalysts :

- However, $Co_2 Ni_2/a TiO_2$ significantly enhances H₂ production activity:
 - 1) This enhancement is attributed to a minor 0.09 eV difference in E_a between $Co_2-Ni_2/a-TiO_2$ and $Co_2/a-TiO_2$.
 - 2) Supported by improved stability between Co_2-Ni_2 cluster and $a-TiO_2$ surface, prolonging catalytic activity.
- Co-Ni clusters synergistically enhance and extend catalytic activity in H₂ production

H Adsorption & Desorption on (Ni₄, Co₄, Co₂-Ni₂) Supported on the Anatase-TiO₂ (101) Surface:DFT

Proposed reaction mechanism of adsorption and associative desorption of H_2 on a $Co_2-Ni_2/a-TiO_2$ surface.

Conclusions

- Ni-Co₃O₄/TiO₂ NR catalysts are successfully synthesized & investigated in the packed bed DBD non-thermal plasma-catalytic DRM reaction for syngas production.
- Catalytic screening for different metal loading confirms superior performance of 10%Ni- $5\%Co_3O_4/TiO_2$ NR catalyst with the highest CH₄ & CO₂ conversion of 86.4% & 84.9%, H₂/CO ratio unity, highest EE of 0.131 mmol kJ⁻¹ & 94.5% carbon balance.
- The enhancement in activity is ascribed to successful impregnation of NiO nanoparticles and Co₃O₄ nanocubes on TiO₂ nanorods with homogeneous dispersion for the 10%Ni-5%Co₃O4/TiO₂ NR composite catalyst as evident in XRD and HRTEM.
- High reducibility, excellent basicity and strong metal-support interaction promote progressive adsorption of CO₂ and other plasma-generating energetic species and boost CO₂ conversion in DRM reaction.
- The optimum reaction condition has been found with the highest conversion and product yield at SIE 300 J ml⁻¹, GHSV 1200 h⁻¹ and CH₄/CO₂ feed ratio of 1.
- DFT analysis shows that the introduction of Co & Ni supported on the a-TiO₂ catalyst have a
 positive impact on hydrogen production activity & migration on the surface.

Acknowledgements

Ministry of Higher Education (MOHE), Malaysia FRGS vot number 5F101

 UTM Fundamental Research Grant, vot number 21H28
 Malaysian-American Commission On Educational Exchange (MACEE)

 CAER Laboratory, University of Kentucky for providing VASP software and Lipscomb High Performance Computing Cluster

www.utm.my innovative • entrepreneurial • global

In the Name of God for Mankind

www.utm.my

THANK YOU FOR YOUR ATTENTION

CREATIVE, RESOURCEFUL, EXCELLENT, GREEN

nnovating Solutions

