

Scientific approach to plasma technologies

Miran Mozetič

Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia

Plasmadis Ltd, Teslova 30, 1000 Ljubljana, Slovenia

Plasma technologies are widely used for processing materials

Surface finish depends on the <u>doses</u> of reactive plasma species (sometimes also on fluxes)

Useful plasma species:

- Positively charged ions
- Radicals, incl. atoms
- VUV (UV) radiation

Surface finish depends on doses Not on discharge parameters

Discharge parameters:

- Type of reactor
- Discharge coupling and power
- Gases, pressures, flows
- Treatment time

Plasma parameters:

- Electron density and temperature
- Types of ions
- Voltage across sheath
- Types of radicals
- Density of radicals
- Fluxes of plasma species including VUV photons

Very few articles report the plasma parameters

Reviewing available literature, one finds no correlation between

conditions)

Water contact angle versus <u>treatment time</u> (at different experimental

Versus the <u>dose</u> of O-atoms

$10^{21} \text{ m}^{-2} 10^{24} \text{ m}^{-2}$

Catalytic tip (FOCP sensor)

What exactly happens upon treatment of polymers with O atoms?

Theory: numerous binding sites for O-atoms on the polymer surface

- 1. Hydroxyl groups on ring C atoms
- 2. Degradation of aromatic ring
- 3. Formation of other O-rich groups

R.C. Longo, at al, Density functional theory study of oxygen adsorption on polymer surfaces, ACS Appl. Nano Mater. 3 (2020) 5189–5202.

Evolution of functional groups versus the fluence of O atoms

PLASMADIS LTD.

Etching should be always

taken into account

Possible explanation: compressive stress

R. L. Bruce et al, J. Appl. Phys., 2010, 107, p. 084310

AFM image of plasma treated originally smooth polymer

Once the range of radical fluence is known, we are ready for upscaling

 \bigcirc

Plasma treatment

Galvanic nickel

No was much cheaper **Classical technology for metallization:**

- Etching with NaOP
- Rinsing, dr., ang
- P Ladium seeding
 - Electrodeless nickel
- Galvanic nickel

low-pressure plasma for treatment of seeds, granules etc

What about fluorinated polymers (Teflon and alike)?

We use a two-stage plasma treatment:1. Hydrogen (for defluorination)2. Oxygen (for polar groups)

Polyolefin-like surface few nm

Bulk teflon

WCA on pretreated **Teflon** vs oxygen-atoms fluence (dose)

Once fluences are known, the upscaling of scientific results to industrial needs is solely a technological problem

Scientific approach to plasma technologies

Miran Mozetič

Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia

Plasmadis Ltd, Teslova 30, 1000 Ljubljana, Slovenia