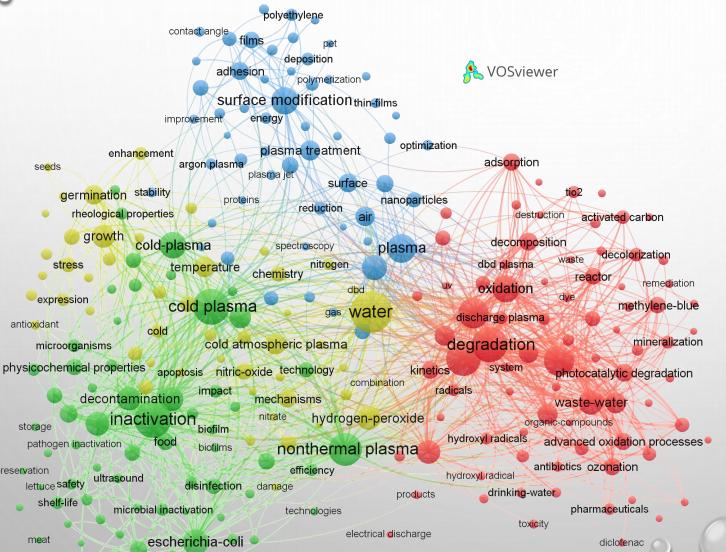
19th to 22nd September 2023

INACTIVATION OF WATERTRANSMISSIBLE VIRUSES BY COMBINING ADVANCED OXIDATION TECHNIQUES

<u>G. PRIMC</u>, A. FILIPIĆ, M. MOZETIČ, M. DULAR, M. PETKOVŠEK, A. ŠTERN, B. ŽEGURA, I. GUTIERREZ AGUIRRE, D. DOBNIK, M. RAVNIKAR, AND R.

ZAPLOTNIK

JOŽEF STEFAN HISTITUTE



- TRENDS AND PERSPECTIVES
- VIRUSES
- COMBINING TECHNIQUES TO COMBAT VIRUS INACTIVATION
- CONCLUSIONS

BIBLIOMETRIC DATA

enterica serovar typhimurium

DEGRADATION

- AOP, PHOTOCAT., OH RAD.
- MINERAL., PHARMA., WASTE, DYE, ORGANIC COMP.
- DIFFERENT PLASMA TYPES
- GREEN
 - PAW, BACTERIA, BIOFILM, FOOD
- PLASMA-SURFACE MODIFICATIONS
 - NP, WCA, POLYMERS, ENERGY
- AGRICULTURE AND CELLS
 - GERMINATION, OXIDATIVE STRESS,
 NO, NH₂, NH₃

- Liu, YA et al. Inactivation mechanisms of atmospheric pressure plasma jet on Bacillus cereus spores and its application on low-water activity foods, 2023, Food research international
- Guo, H et al. A comprehensive insight into plasma-catalytic removal of antibiotic oxytetracycline based on graphene-TiO₂-Fe₃O₄ nanocomp., 2021, Chemical engineering journal
- Fan, JW et al. Non-thermal plasma combined with zeolites to remove ammonia nitrogen from wastewater, 2021, Journal of hazardous materials
- Guo, L et al. Inactivation of **Salmonella enteritidis** on the surface of eggs by air activated with GA discharge plasma, 2023, Food control Zhang, A et al. Motivation of RONS by a novel NT plasma coupled with Ca H₂O₂ system for synergistic **removal of sulfamethoxazole in waste-activated sludge**, 2022, Water research
- Zhang, ST et al. Improvement of **pea protein** gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study, 2021, Innovative food science & emerging technologies
- Zheng, TT et al. Mechanical reinforcement of a cellulose aerogel with nanocrystalline cellulose as reinforcer, 2017, RSC advances
- Wang, S et al. Highly synergistic effect for **tetracycline degradation** by coupling a transient spark gas-liquid discharge with TiO₂ photocatalysis, 2022, Chemical engineering journal
- Hua, XW et al. Novel physical treatments (pulsed light and cold plasma) improve the quality of **postharvest apricots** after long-distance simulated transportation, 2022, Postharvest biology and technology
- Luo, J et al. DBD discharge CP treatment of **pork loin**: effects on muscle physicochemical properties and emulsifying properties of **pork myofibrillar protein**, 2022, Lwt-food science and technology
- Wang, ZW et al. Inactivation of Alicyclobacillus contaminants in apple juice by dielectric barrier discharge plasma, 2023, Food control
- Chen, HM et al. Plasma-assisted facile fabrication of omniphobic graphene oxide membrane with anti-wetting property for membrane distillation, 2023, Journal of membrane science
- Sharafodin, H et al. Potential application of DBD plasma technique for modifying structural and physicochemical properties of soy protein isolate, 2021, Food hydrocolloids
- Fang, C et al. Degradation of **tetracycline** by atmospheric-pressure non-thermal plasma: enhanced performance, degradation mechanism, and toxicity evaluation, 2022, Science of the total environment
- Liu, Q et al. Plasma-microbubble treatment and sustainable agriculture application of diclofenac-contaminated WW, 2023, Chemosph.

FACTS

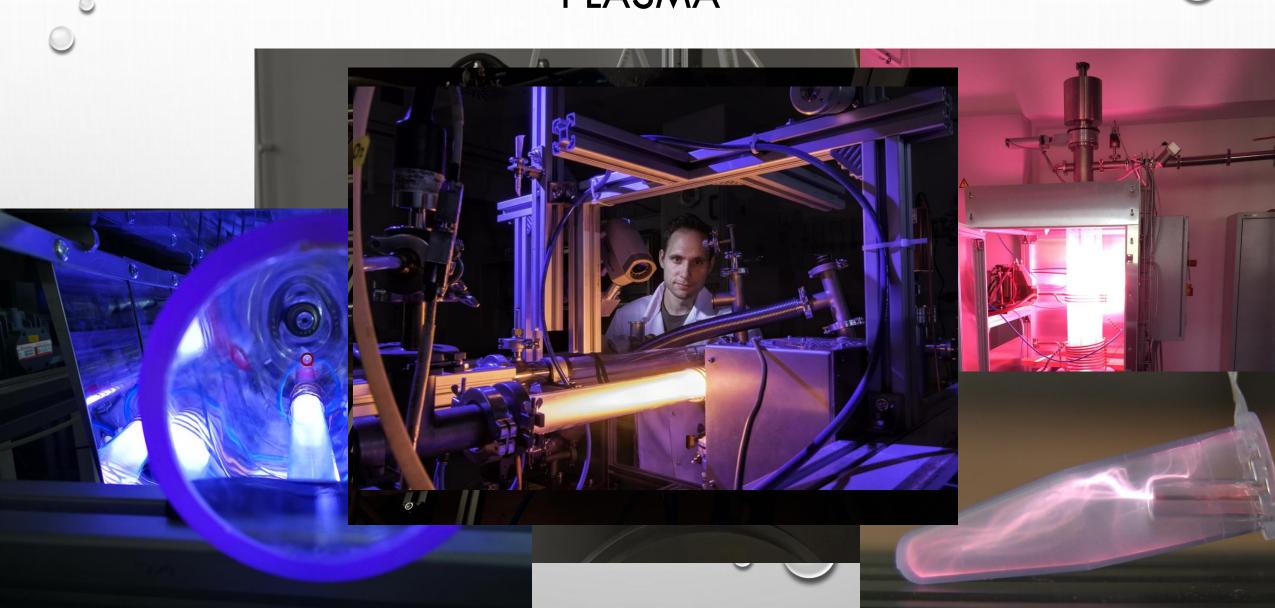
- > 2 BIL. PEOPLE LIVE IN WATER-STRESSED COUNTRIES (FECES AND MICROBIAL CONTAMINATION)
- 2 L/PERSON DAILY DRINKING / ~3000 L/PERSON PRODUCE DAILY FOOD NEEDS,
 ~70% OF WATER WORLDWIDE IS USED FOR IRRIGATION → 20% CULTIVATED LAND
 → 40% FOOD PRODUCED
- GLOBALLY, GROUNDWATER PROVIDES AROUND 50% OF ALL DRINKING WATER AND 43% OF ALL AGRICULTURAL IRRIGATION
- IN 2019, ANTIBIOTIC-RESISTANT INFECTIONS \rightarrow DEATHS OF \sim 5 M PEOPLE

CONTAMINANTS OF EMERGING CONCERN

2ND LEADING CAUSE OF DEATH IN CHILDREN < 5 YEARS 1.5 MILLION OF CHILDREN (200.000)

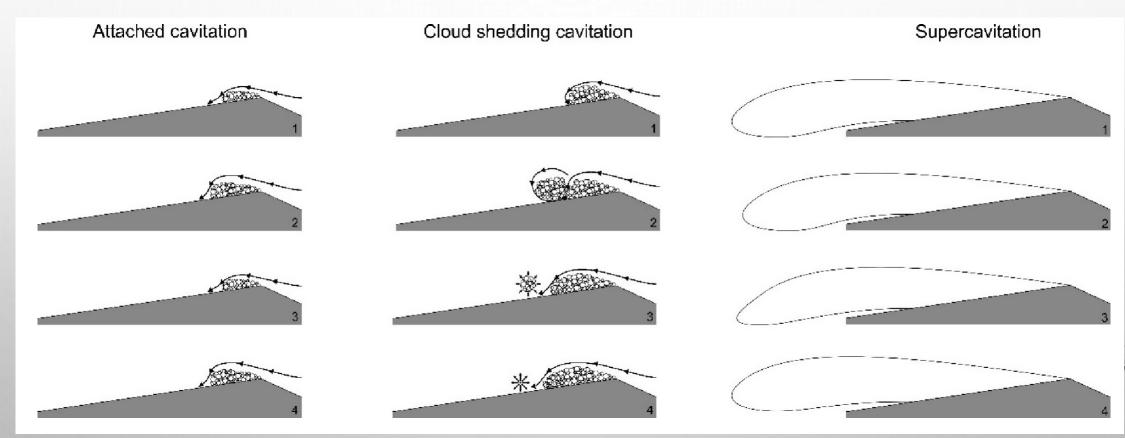
VIRUS REMOVAL

- NANO FILTRATION, SEDIMENTATION WITH FLOCCULATION
- HEAT, CHLORINATION, OZONATION, UV
- IONIZING RADIATION, PHOTOCATALYSIS
- PLASMA, CAVITATION

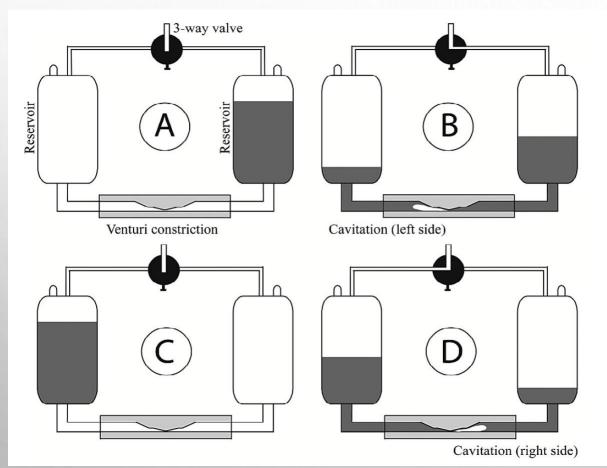


Organism	Temperature (°C)	Inactivation time(s)	Log ₁₀ reduction	Reference
BACTERIA				
	60	300	3.9 log	D'Aoust et al. (1988)
0 11 1	63	300	> 5 log	D'Aoust et al. (1988)
Campylobacter spp.	60	8.2	Per log	Sörqvist (2003)
	62	15	3.5–5 log	Juffs & Deeth (2007)
Coxiella burnetii	79.4	25	No survivors	Juffs & Deeth (2007)
	60	1 800	6 log	Moce-Llivina et al. (2003)
Escherichia coli	65	< 2	Per log	Spinks et al. (2006)
	72	0.4	Per log	Sörgvist et al. (2003)
	60	300	1.5 log	D'Aoust et al. (1988)
	64.5	300	> 5 log	D'Aoust et al. (1988)
Escherichia coli 0157	65	3	Per log	Spinks et al. (2006)
	62	15	< 1–5 log	Juffs & Deeth (2007)
Enterococcus faecalis	65	7–19	Per log	Spinks et al. (2006)
	72	23	Per log	Sörqvist (2003)
Klebsiella pneumoniae	65	< 2	Per log	Spinks et al. (2006)
Legionella pneumophila	58	360	Per log	Dennis, Green & Jones (1984)
Legionella spp.	80	18–42	Per log	Stout, Best & Yu (1986)
Mycobacterium paratuberculosis	72	15	> 4 log	Juffs & Deeth (2007)
Pseudomonas aeruginosa	65	5	Per log	Spinks et al. (2006)
Salmonella typhimurium	65	< 2	Per log	Spinks et al. (2006)
Salmonella choleraesuisª	60	300	Per log ^b	Moce-Llivina et al. (2003)
Salmonella spp. except Salmonella seftenberg	72	0.1	Per log	Sörqvist (2003)
Salmonella seftenberg	60	340	Per log	Sörqvist (2003)
Serratia marcescens	65	< 2	Per log	Spinks et al. (2006)
Shigella sonnei	65	3	Per log	Spinks et al. (2006)
Vibrio cholerae	55	22.5	Per log	Johnston & Brown (2002)
VIDITO CITOTELAE	70	120	> 7 log	Johnston & Brown (2002)
Yersinia enterocolitica	64.5	300	> 5 log	D'Aoust et al. (1988)
reronna enterocontica	72	0.5	Per log	Sörqvist (2003)
VIRUSES				
Adenovirus 5	70	1 260	> 8 log	Maheshwari et al. (2004)
Coxsackievirus B4	60	1 800	5.1 log	Moce-Llivina et al. (2003)
Coxsackievirus B5	60	1 800	4.8 log	Moce-Llivina et al. (2003)
Echovirus 6	60	1 800	4.3 log	Moce-Llivina et al. (2003)
Enteroviruses	60	1 800	4.3 log	Moce-Llivina et al. (2003)
	65	120	2 log	Parry & Mortimer (1984)
	65	1 320	3 log	Bidawid et al. (2000)
	75	30	5 log	Parry & Mortimer (1984)
Hepatitis A	80	5	5 log	Parry & Mortimer (1984)
	85	< 30	5 log	Bidawid et al. (2000)
	85	<1	5 log	Parry & Mortimer (1984)
	60	1 800	5.4 log	Moce-Llivina et al. (2003)
	62	1 800	> 5 log	Strazynski, Kramer & Becker (2002)
Poliovirus 1	72	30	> 5 log	Strazynski, Kramer & Becker (2002)
	95	15	> 5 log	Strazynski, Kramer & Becker (2002)

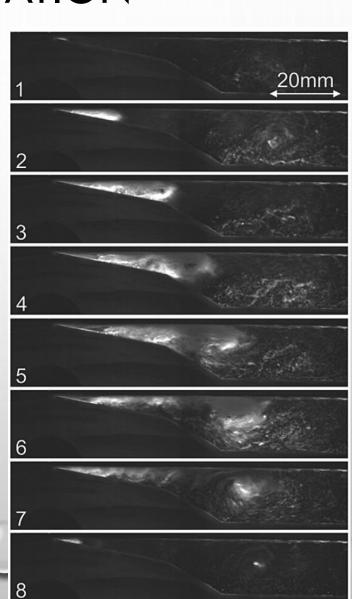
PLASMA


ACOUSTIC AND HYDRODYNAMIC CAVITATION

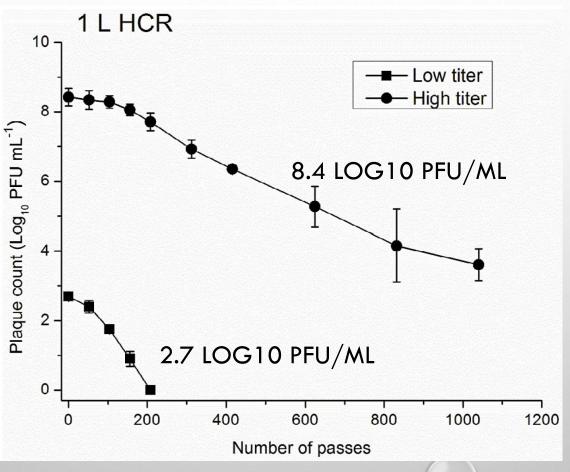
HYDRODYNAMIC CAVITATION



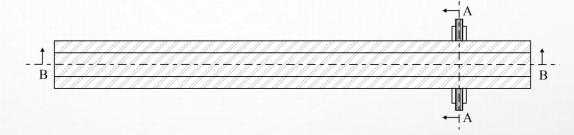
Zupanc et al., Ultrasonics Sonochemistry 57 (2019), 147-165



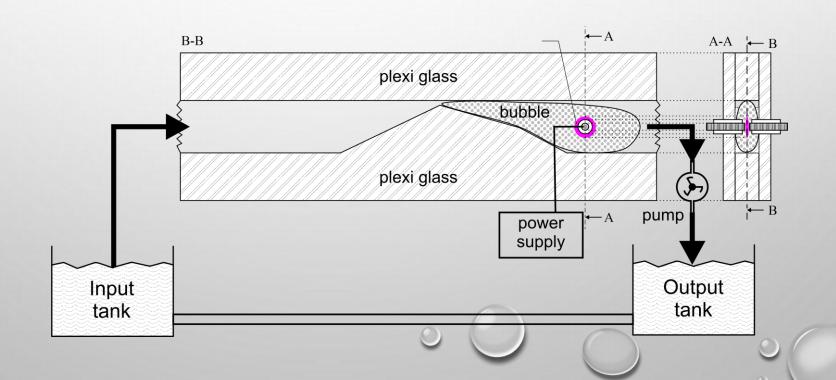
HYDRODYNAMIC CAVITATION


Zupanc et al., Ultrasonics Sonochemistry 57 (2019), 147-165

HYDRODYNAMIC CAVITATION

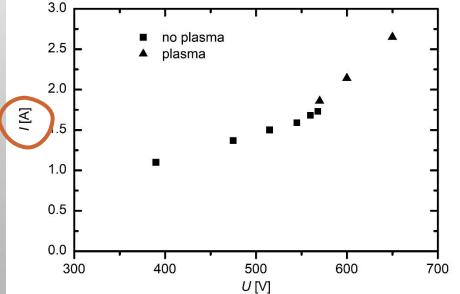


Kosel et al., Water Research 124 (2017) 465-471 Filipič et al., Ultrasonics Sonochemistry 82 (2022), 105898

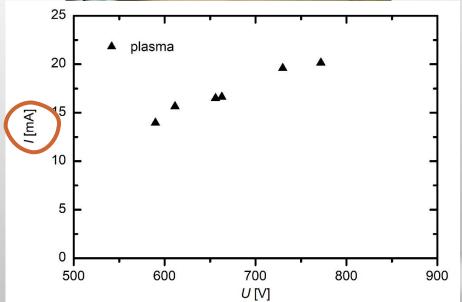

THE COMBINED DEVICE

EU AND US
PATENT PENDING


EP3981743A1


US2022106206A1

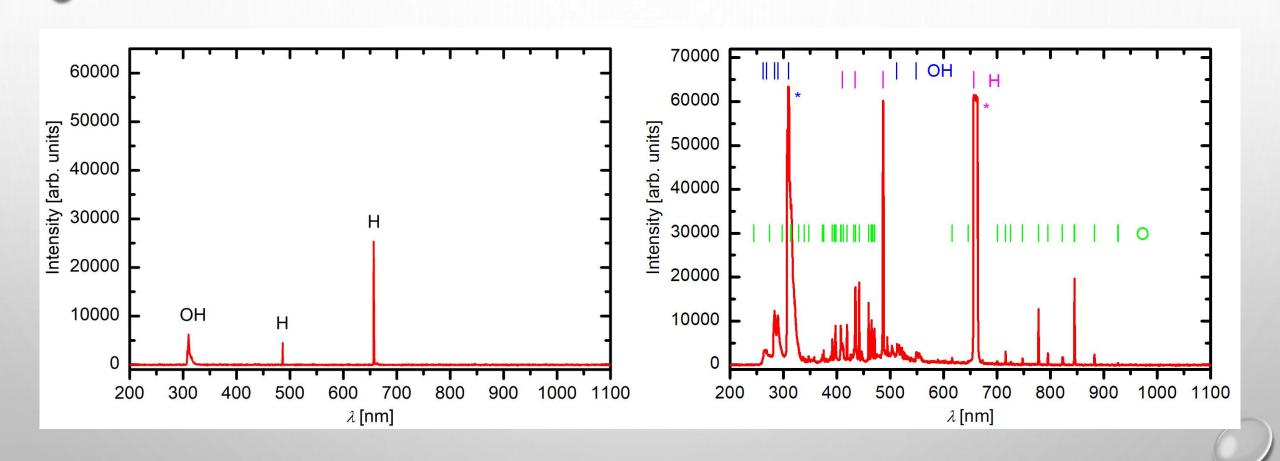




FIRST COMBINED DEVICE ITERATIONS



LATEST VERSION

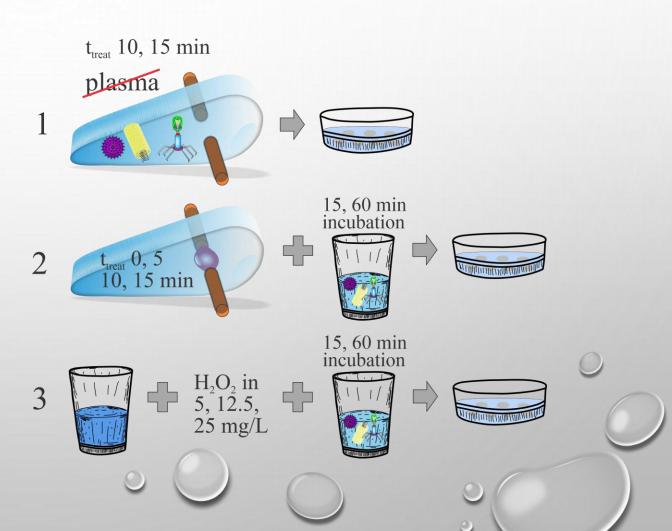


OPTICAL EMISSION SPECTRUM

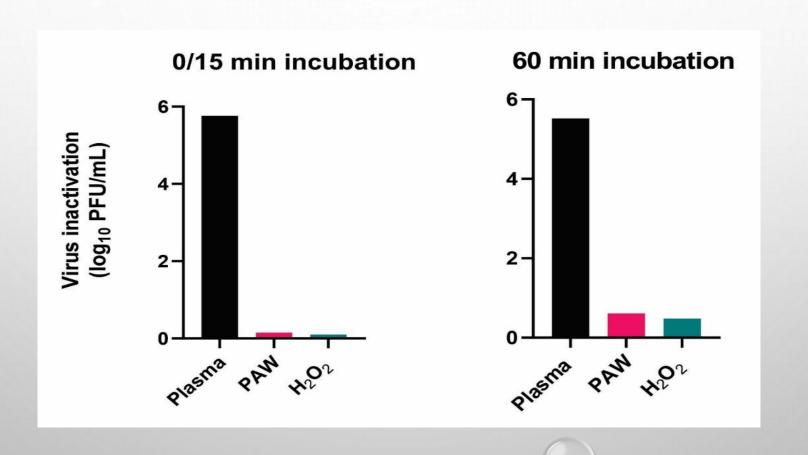
- IMMEDIATE MS2 INACTIVATION BY DIRECT TREATMENT
- CONTROL TREATMENTS
- CYTO AND GENO TOXICITY

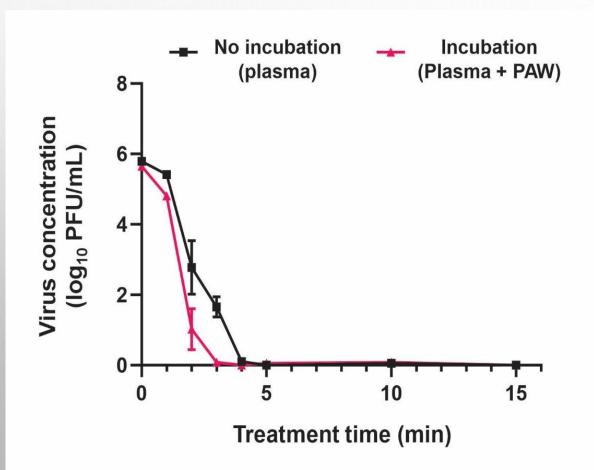
VIRUS INACTIVATION OF MS2 BACT.

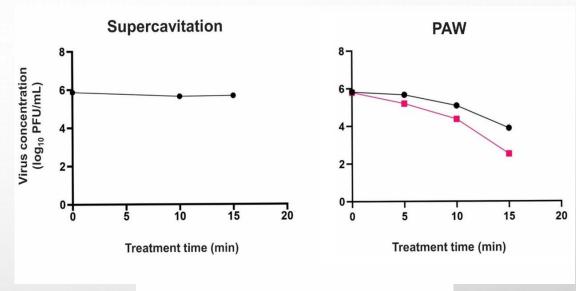
Incubation (min)	Virus inactivation (%)							
	Treatment time (min)							
	1	2	3	4	5	10	15	
0	71	99.8	99.97	99.9997	100	100	100	
60	87	99.9993	100	100	100	100	100	

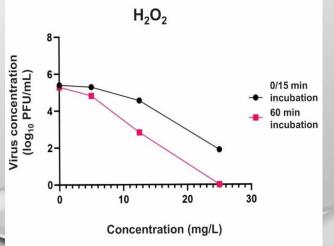

H ₂ O ₂ concentration (mg/L)									
Treatment time (min)									
0	1	2	3	4	5	10	15		
0	0.5-	2	2-5	<5	5	10	10- 25 ^α		

CONTROL TREATMENTS

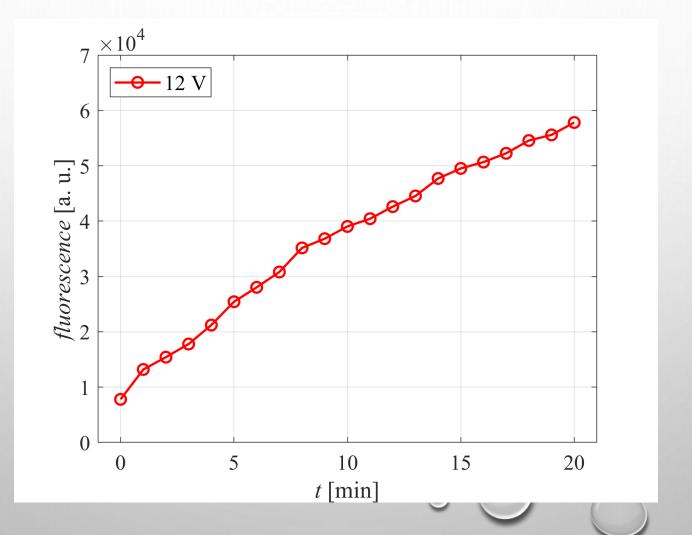

- 1. SUPERCAVITATION (NO PLASMA)
- 2. SUPERCAVITATION W. PLASMA + INCUBATION (PAW)
- 3. $H_2O_2 + INCUBATION (H_2O_2)$

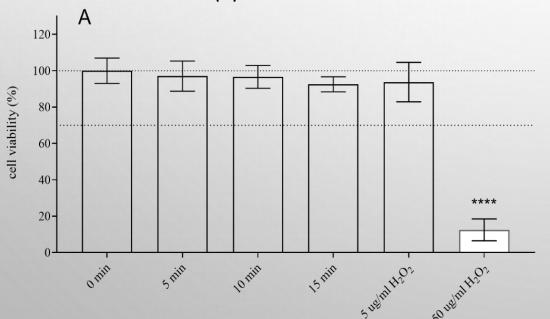

VIRUS INACTIVATION OF MS2 BACT.

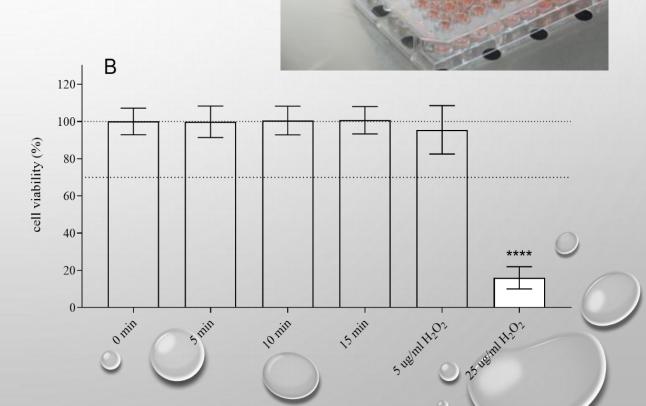




CONTROL TREATMENTS

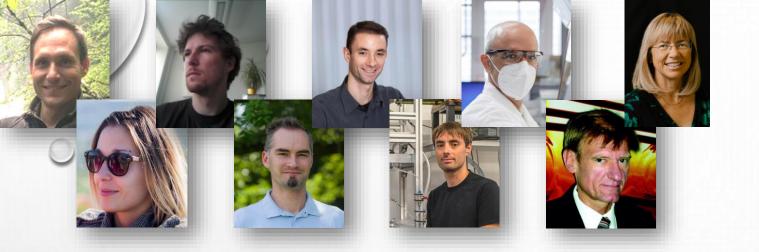






IS THE TREATMENT SAFE?

- PAW CYTOTOXICITY: MTS ASSAY AND HUMAN HEPATOCELLULAR CARCINOMA CELL LINE (HEPG2)
 - 2 HOURS (A)
 - 24 HOURS (B)



- SUCCESSFUL MS2 INACTIVATION FOR 6 LOG IN 5 MIN (0.4 L)
- NO ADVERSE EFFECTS

- CEC'S (ESTRADIOL, DICLOFENAC, BPA 100%, VALSARTAN, NAPROXEN 60%, 20 MIN.)
- COMBINATION WITH PHOTOCATALYTIC REACTOR (TETRACYCLINE → TOTAL DEGRADATION 10 MIN)
- CURRENTLY
 - UPSCALE AT 100 L/MIN
 - PFAS DEGRADATION
 - RESEARCH ON HUMAN NOROVIRUS AND ITS SURROGATE
- MECHANISMS (SCAVENGERS), BACTERIA, DIFFERENT WATER MATRICES, COMBINATIONS

THANKS!!!

Faculty of Mechanical Engineering Laboratory for Hydraulic Machines LVTS

