

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Plasma-based approaches for removing micropollutants/emerging contaminants from water; Case study of PFAS

Presenter: Mubbshir Saleem

Technical Meeting on Emerging Applications of Plasma Science and Technology

Sep 19 - 22, 2023

IAEA Headquarters

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Expertise and roles

Prof. Ester Marotta Associate professor in Organic Chemistry

Dr. Eng. Mubbshir Saleem Researcher Environmental Engineering

Giulia Tomei PhD student in Chemical Sciences

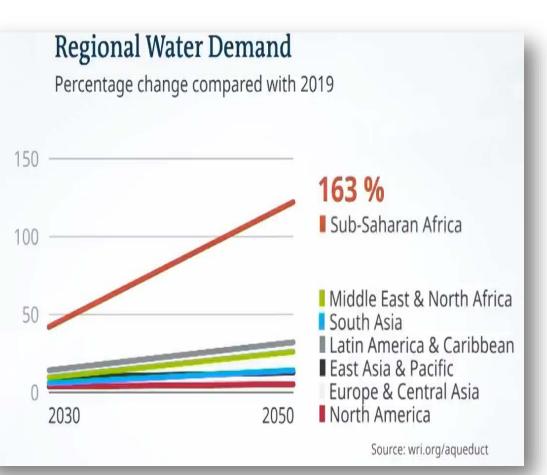
Dr. Goran Sretenović

Collaborator, plasma physics University of Belgrade

- Group and activities coordination
- Problem solving
- Design of plasma source and power supplies
- Design, execution and management of the experiments
- Chemical analyses
- Mass spectrometry analyses
- Experimentation
- Mass spectrometry analyses
- Plasma diagnostics

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Thirsting for Solutions: Confronting Water Scarcity Amid Rising Demand


1 in **4** person does not have enough water to meet the demand for drinking, agriculture and industry.

And that number is set to rise

(World Resources Institute)

The way Forward

- Water Conservation and Efficient use
- Wastewater Management and Reuse

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Unveiling the Unseen?

Micropollutants

Micropollutants are biological

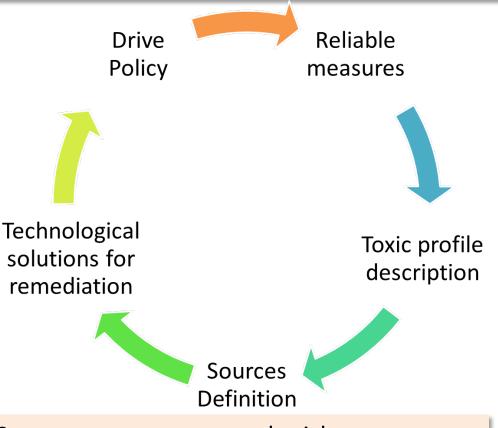
or chemica present in the <u>trace quantine</u> the micro/na <u>level</u>) as a activities.

merging

often used for

<u>ecause of lower</u>

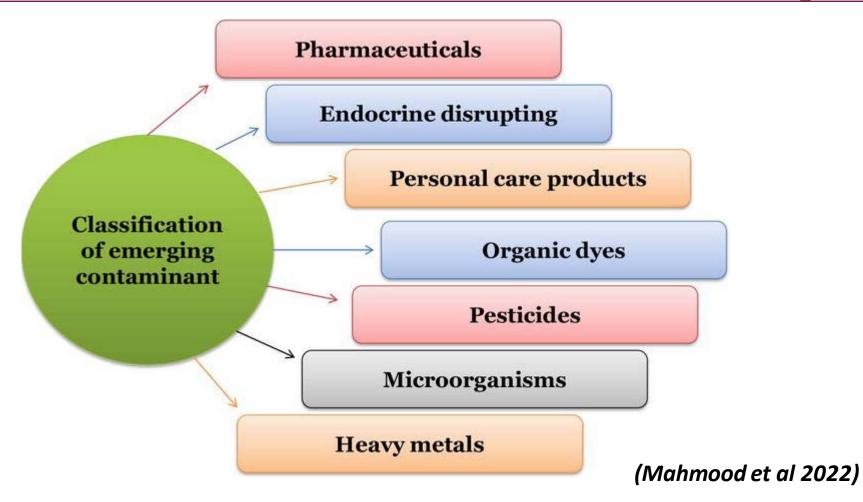
- 2. <u>Health impact is expected but not</u> <u>quantified.</u>
- 3. unmonitored or unregulated



Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Advance analytical techniques in micropollutant detection and their perspective for environment

WHO has evaluated the health risks about ECs and concluded that these are generally very low. So, we have time to act appropriately PREVENTIVE MEASURES – NOT A CRISIS



Chromatograpy-high Resolution Mass Spectrometery can re-style risk management in environment by using **non-target analysis** and the **omic approach**

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Around 100000 chemicals are used in this world today Over 800 chemicals are suspected and known Endocrine disrupting (EDCs)

- 1. Adult fish are failing to reproduce,
- 2. Health and fitness of the fish are impaired.

3. Chemical pollution (both nutrients and micropollutants),

- 4. The poor morphological quality and longitudinal connectivity of rivers,
- 5. Insufficient food quality,

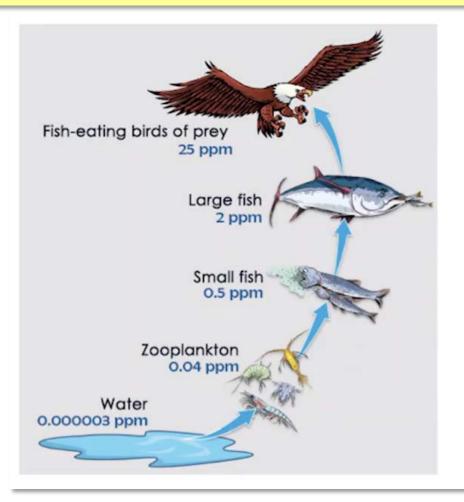
Where Have All the FISH Gone?

The reasons why fish catches in Swiss rivers are declining.

Estrogen disrupters escape from wastewater treatment plants

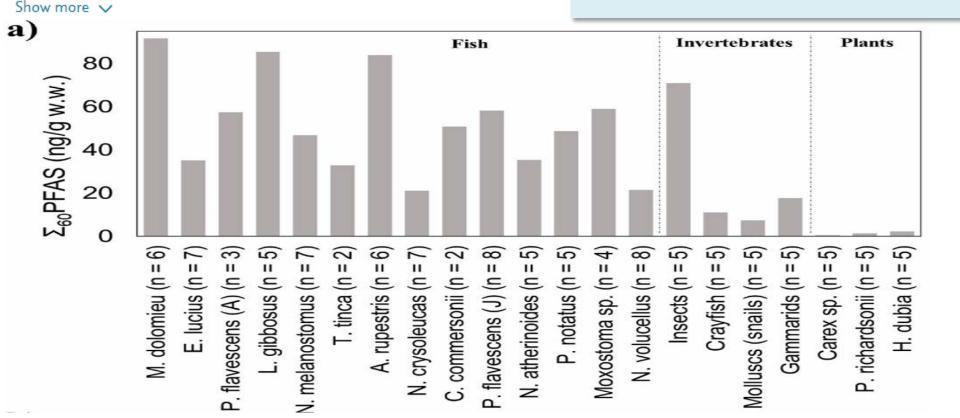
The levels of estrogenicity downstream of municipal wastewater treatment plants were calculated on the basis of the number of inhabitants in the catchment, elimination rates of estrogen in WWTPs, and median flows in the receiving waters. Q_{182} is the flow rate for at least 182 days/yr; E2 is 17- β -estradiol.

E2 equivalents (median flow: Q₁₈₂) • 0–0.1 ng E2/L • 0.1–1 ng E2/L • 1–5 ng E2/L


50 km

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

CECs can bioaccumulate and biomagnify

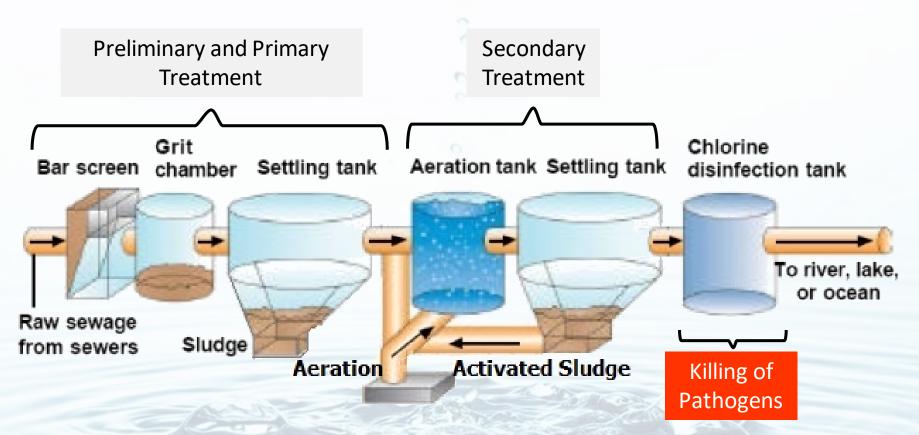

Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web

☆

<u>Gabriel Munoz</u>^a, <u>Laurie Mercier</u>^b, <u>Sung Vo Duy</u>^a, <u>Jinxia Liu</u>^c, <u>Sébastien Sauvé</u>^a, <u>Magali Houde</u>^b ♀ ⊠

Conclusions

- PFAS found at high frequency and relative abundance in predators.
- Federal guidelines were frequently exceeded, indicating that PFOS may represent ecotoxicological risks to mammalian and avian consumers



Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Conventional Wastewater Treatment Stages

Wastewater and sewage: Many emerging contaminants, including pharmaceuticals and personal care products, can enter the environment through treated wastewater that is discharged into rivers and lakes.

Università degli Stud di Padova Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

	Drugs	Unit operations	Removal (%)	Region
-	Ibuprofen	AcS/phosphate removal	78-100	Aura, Tampere, Harjavalta (Finland)
ugs) ient		AcS/N/DeN/phosphate removal	92-99	Helsinki, Seinajoki, Turku (Finland)
, n e		1º settling, AcS, 2º	60-70	Galicia (Spain)
Ds dru tm		1º Settling, AcS/N/DeN, 2º settling	86	S. England
at Z		1 ^o Settling, AcS	75	Rio de Janeiro (Brazil)
A L O		AcS, ppt with FeCl ₃	62-79	on Lake Geneva (W. Switzerland)
NSAIDs atory dr r treatm	Diclofenac	Conventional WWTP	17	Berlin (Germany)
ome common NSAll anti-inflammatory al wastewater trea systems	Naproxen	AcS, P removal	23-60	Aura, Tampere, Harjavalta (Finland)
		AcS/N/DeN/phosphate removal	9-25	Helsinki, Seinajoki, Turku (Finland)
n la		1 ^o Settling, AcS	75	Rio de Janeiro (Brazil)
er sto		AcS, disinfection	18	Baltimore (USA)
ie comn iti-inflai wastew systems		AcS/phosphate removal	55-98	Aura, Tampere, Harjavalta (Finland)
Some lal anti onal w sy		AcS/N/DeN/phosphate removal	69-94	Helsinki, Seinajoki, Turku (Finland)
		1 ^o Settling, AcS	78	Rio de Janeiro (Brazil)
Fate of Some common NSAIDs (nonsteroidal anti-inflammatory drugs) in conventional wastewater treatment systems	Ketoprofen	AcS/N/DeN, sand filtration	50-80	Kloten/Opfikon (Switzerland)
		AcS/phosphate removal	51-100	Aura, Tampere, Harjavalta (Finland)
		AcS/N/DeN/phosphate removal	63-98	Helsinki, Seinajoki, Turku (Finland)
н st lo		AcS, ppt with FeCl ₃	15-72	on Lake Geneva (W. Switzerland)
nor n c	Mefenamic acid	1 ^o Settling, AcS	69	Rio de Janeiro (Brazil)
		1 ^o Settling, AcS/N/DeN, 2 ^o settling	91	S. England
		1 ^o Settling, AcS, ppt with FeCl3, 2 ^o settling	28-74	on Lake Geneva (W. Switzerland)
		AcS, ppt with FeCl ₃	19-69	on Lake Geneva (W. Switzerland)

Chronic exposure to ibuprofen at 0.1 - 1 μ g/L affects several endpoints related to the reproduction of the fish *(Han et al, 2010)*.

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

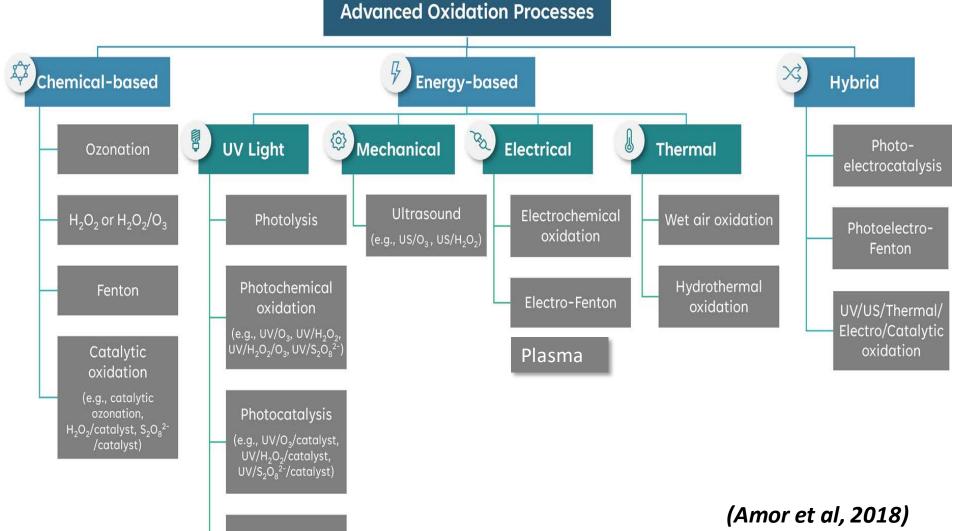
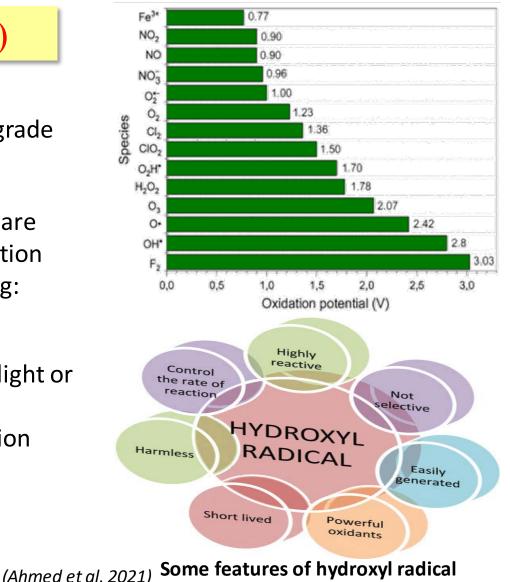


Photo-Fenton

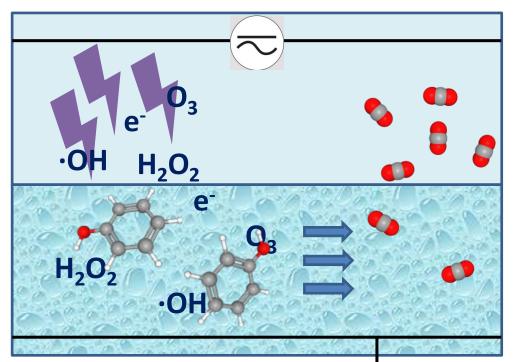


Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

The Hyroxyl Radical ('OH)

- OH can indiscriminately degrade numerous organic pollutants.
- 'OH have a very short lifetime, they are only in situ produced during application through different methods, including:
 - 1. Peroxone $(H_2O_2 \text{ and } O_3)$,
 - 2. irradiation (such as ultraviolet light or ultrasound)
 - catalysts (such as Fenton reaction with Fe²⁺)
 - 4. Atmospheric plasma

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)



Atmospheric non-thermal plasma

When plasma interacts with water at the **plasma-liquid interface**, it generates various highly reactive species which interact with contaminants and ultimately mineralize it.

REACTIVE SPECIES

$$O_{2} + e^{-} \rightarrow 2O^{+} + e^{-}$$
$$O + O_{2} + M - O_{3} + M$$
$$H_{2}O + e^{-} \rightarrow H + OH + e^{-}$$
$$\cdot OH + OH \rightarrow H_{2}O_{2}$$

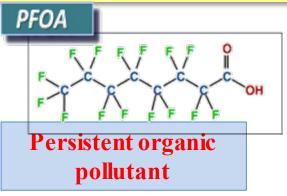
(Ceriani et al., 2018)

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

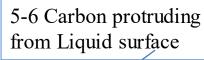
AP: advantages and challenges

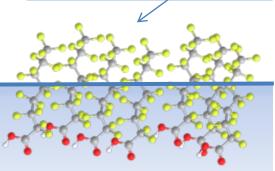
GREEN TECHNOLOGY

- No need for heat, vacuum or pressure
- ✓ In situ generation of reactive species (e⁻, ions, •OH, •H, H₂O₂, ..) without addition of chemicals
- ✓ No need for added chemicals, catalysts or special materials
- ✓ Only consumable is energy: it can be powered by renewable energy sources


- Simple and robust apparatus, with fast switch on/off procedures
- ✓ High versatility of application
- ✓ High efficacy and efficiency, also with most refractory pollutants like PFAS, with > 99% degradation
 - Energy costs
 - Scaling-up

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)




The Contaminant(s)

PFOA=Perfluorooctanoic acid

- Xenobiotic compound with wide industrial application
- highly soluble in water
- non-volatile
- Chemically inert
- surfactant properties

Why to Treat PFOA?

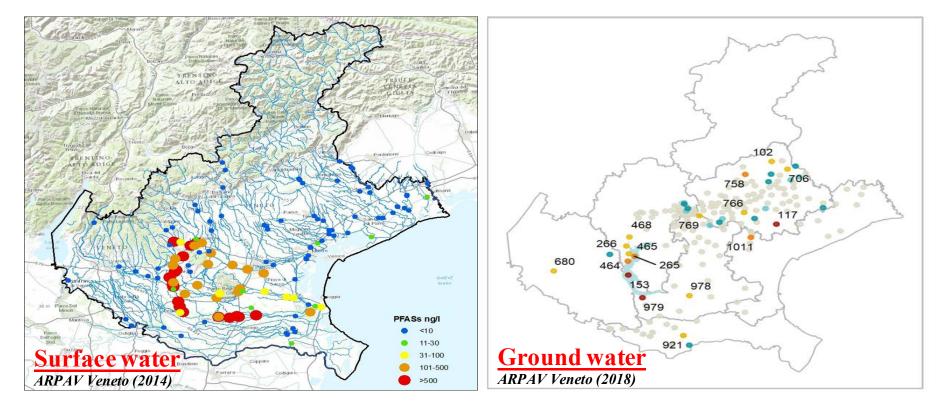
Health effects

- Known endocrine disruptor and expected carcinogen
- Mean half life in human body between 2 to 6 years.
- 20% increase in average mortality in PFOA contaminated area in Veneto Region

Pathologies In PFOA	% Increase due to PFOA exposure		
Diabetes	21% men and 48% women		
Cerebrovascular diseases	34% men and 29% women		
Infarction	22% men and 24% women		
Alzheimer's disease	33% men and 35% women		
Mortality due to breast	11%		
Cancer			

(Mastrantonio et al., 2017)

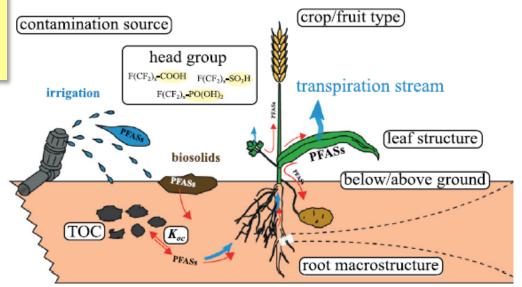
Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

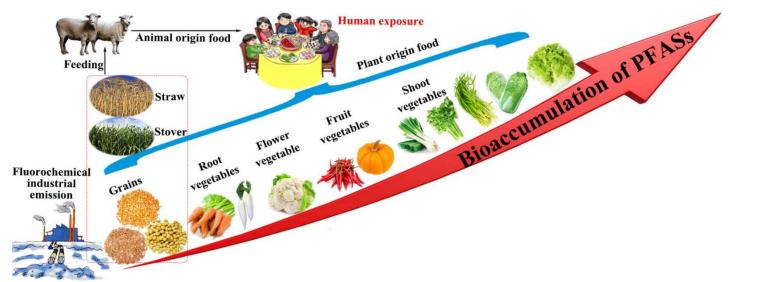


Contamination of PFASs in Veneto - Italy

Two main ways of propagation:

- Surface waters > 500 ng/L
- Groundwater > 1000 ng/L


Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)


PFAS accumulation in the Food Chain

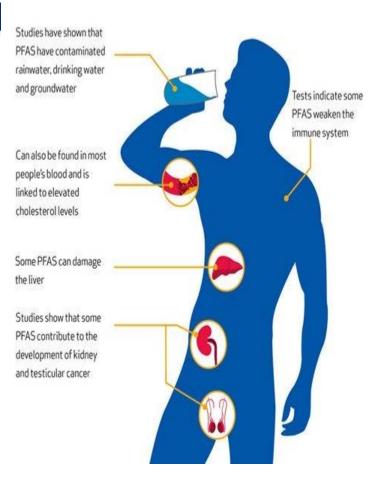
The main factors affecting the translocation of PFAS

- Protein content of the plant (positively correlated with accumulation) Wen et al. (2016)
- 2. Length of the chain of PFASs (the longerchained compounds has lower accumulation rates)

Lesmeister et al. (2021)

Liu et al. (2019)

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)


≡ Menu

f

ECONOTIMES | Economy

3M Makes History With Record\$10.3B Settlement Over WaterPollution From 'Forever Chemicals'

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Why Use Plasma?

- 1. Most common treatment technologies for PFOA removal:
 - \checkmark Activated carbon
 - ✓ Ion-exchange

However,

- short breakthrough times in case of Ion-exchange
- Disposal of waste saturated adsorbent and concentrated brine solution (from ionexchange resin regeneration),
- 2. More energy efficient in comparison to other advanced oxidation processes (AOPs) in PFOA removal (Stratton et al., 2017)
 - 1. 8 times more efficient than activated persulfate,
 - 2. 4 times more efficient than electrochemical treatment,
 - 3. over 57 times more efficient than sonolysis.

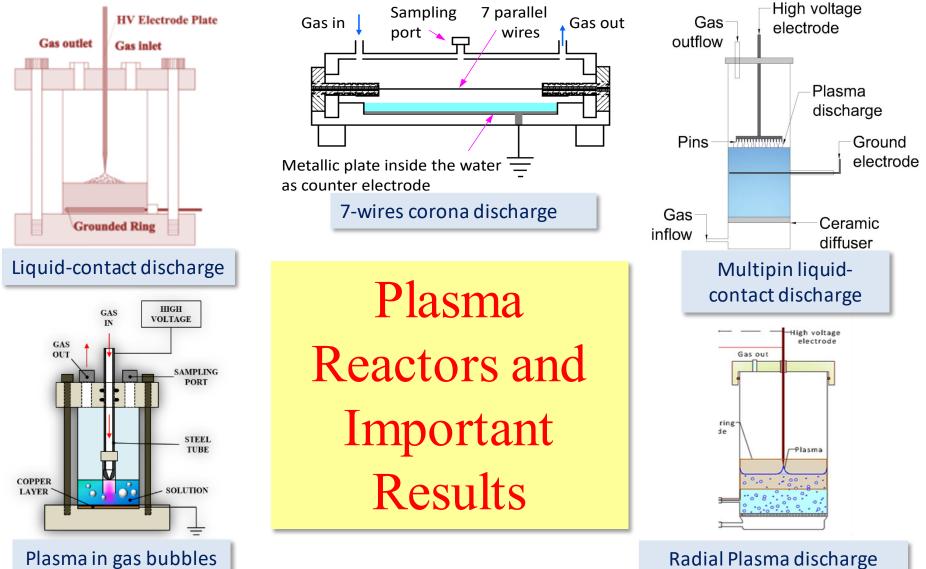
3. Insitu generation of reactive species without chemicals (OH, H, e-, H₂O₂, etc.), Especially

- ✓ aqueous electrons and free electrons
- major contributor of PFOA degradation

Comparison of scaled-up PFAS destruction technologies

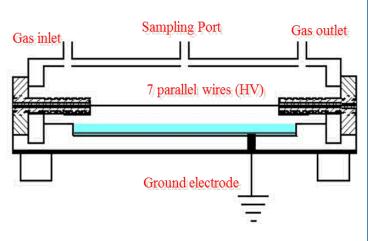
	Electrochemical Oxidation	Plasma Treatment	Sonolysis
Technology Readiness Level (0-9)	6–8	7–9	5–7
Pre-treatment requirement	no, but advantageous	no	no
Requirement for chemical	no	no	no
Energy per order of magnitude (EEO)	93 kWh/m3	11 kWh/m3	230-1300 kWh/m3
Ability to reach ng/L PFAS limits	yes	yes	yes
Effective for waters with high or low salinity	more efficient at higher salinities ~ tens of g/L	More efficient at lower salinities	More efficient at moderately high salinities
Effective for waters with high organic load or pH	yes	yes	yes

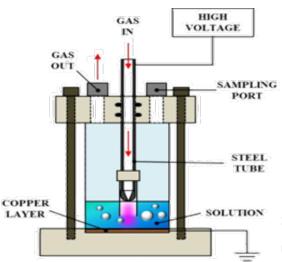
(Blotevogel et al, 2023)

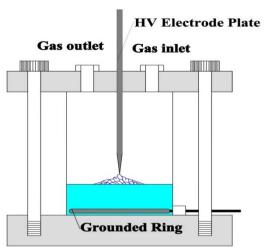


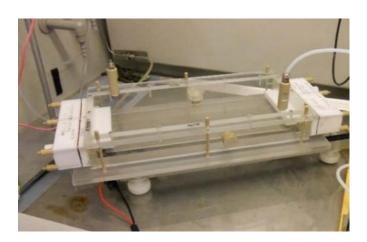
UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

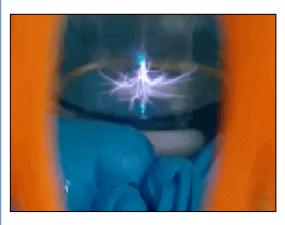

Radial Plasma discharge


Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

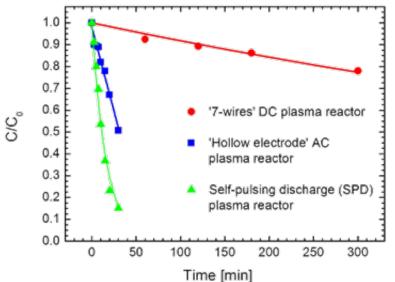

Wire to plate corona Discharge

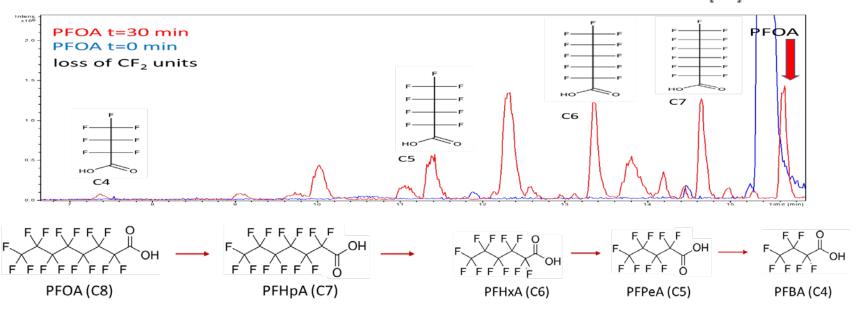


Plasma discharge in a gas bubble inside the solution



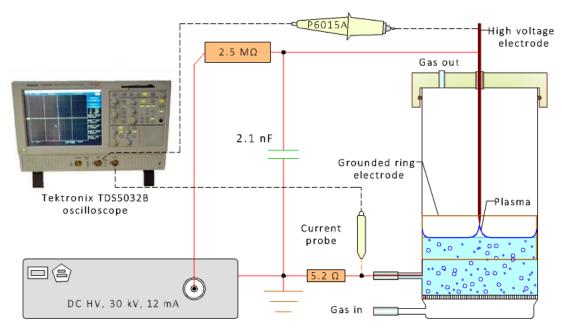
Self-pulsing discharge in contact with liquid



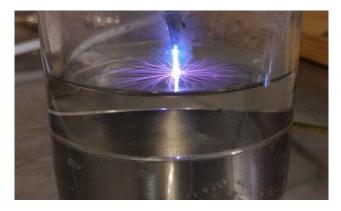

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Performance Comparison

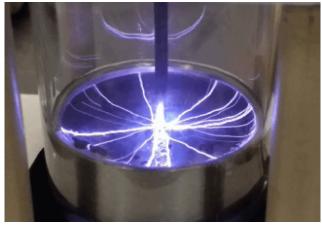
- 1. Self-pulsing discharge was more efficient than the other two discharge types.
- 2. corona discharge and plasma in gas bubbles were efficient in degrading other organic compounds like phenol they showed limited performance in degrading PFOA.
- 3. PFOA degradation produce short chain homologues through chain reduction



Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)



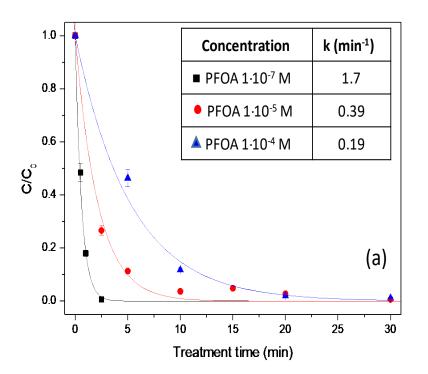
RAdial Plasma discharge (RAP)


- ➢ HV stainless steel electrode 6 mm above solution
- Grounded ring electrode at the gas-liquid interface
- Argon bubbling = 100 mL/min
- \blacktriangleright Treated Volume = 30 mL
- > Input Power = 4 W

SPD Discharge Submerged ground electrode

RAP Discharge Ground electrode at the gas-liquid interface

Saleem et al. (2022)



Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Important Results

- First order decay constant was inversely related to the initial PFOA concentration.
- For 41.4 μ g/L, kinetics was even faster and byproducts were < LC-ESI/MS detection threshold (0.41 μ g/L, 10⁻⁹ M) in < 2.5 min
- ➢ Upto 76% mineralization
- 45% and 85% TOC removal after 30 and 60 min for 4.14 mg/L PFOA solution.

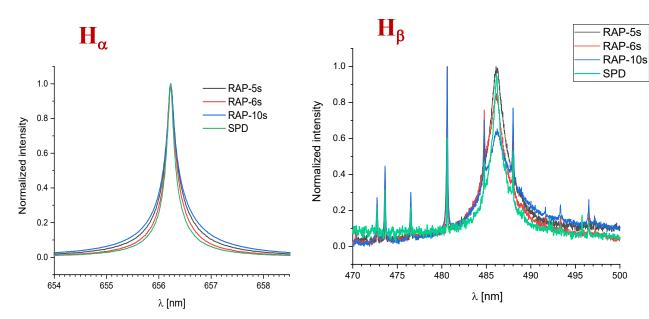
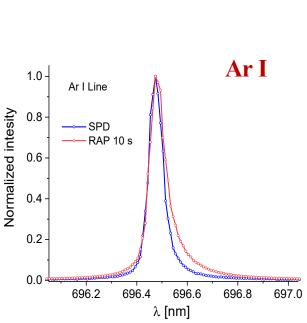


Table 1 RAP's observed k,	G ₅₀ and EE/O values at	t various PFOA cond	centrations at 4 W
· · · · · · · · · · · · · · · · · · ·	30		

Volume (mL)	Concentrations	% Degradation	k (min ⁻¹)	G ₅₀ (mg/kWh)	EE/O (kWh/m ³)
	$41.4 \text{ mg/L}, (1 \cdot 10^{-4} \text{ M})$	98.9% in 30 min	0.19	2364.6	13.8
30	$4.14 \text{ mg/L}, (1 \cdot 10^{-5} \text{ M})$	99.3% in 30 min	0.39	527	6.0
	41.4 μ g/L, (1·10 ⁻⁷ M)	>99% in 2.5 min	1.7	22.5	3.9
100	$4.14 \text{ mg/L}, (1 \cdot 10^{-5} \text{ M})$	>99% in 15 min	0.46	2070.4	1.02

Saleem et al. (2022)


OES measurments and electron densities

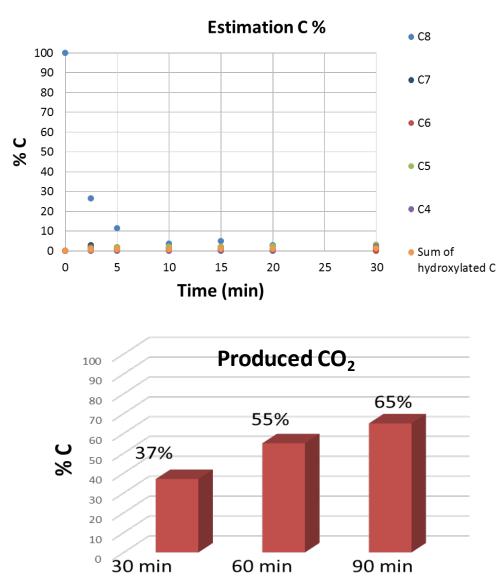
Normalized H_{α} and H_{β} emission for SPD and RAP reactors.

- The line profiles are wider for all three RAP recordings which indicates higher electron density in RAP discharge compared to SPD.
- Higher Ar ion emissions for RAP compared to SPD.

	RAP	SPD
n _e [cm ⁻³] Low density component	8.6·10 ¹⁶	5.5·10 ¹⁶
n _e [cm ⁻³] High density component	6.9·10 ¹⁵	$4.7 \cdot 10^{15}$

Comparison of the Ar I 696 nm line profiles for RAP and SPD reactors.

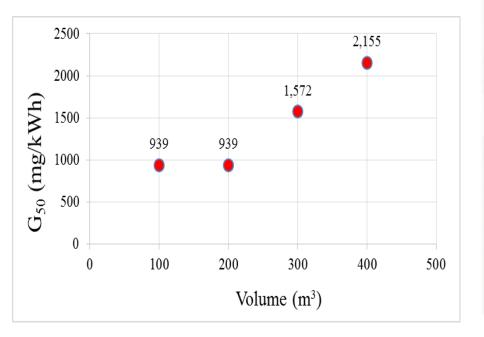
The recorded line is wider for the RAP reactor, which also confirms higher electron density. Caiversità digu studi NIVERSITÀ ^{di Padova}degli Studi di Padova di Padova


Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Mass Balance

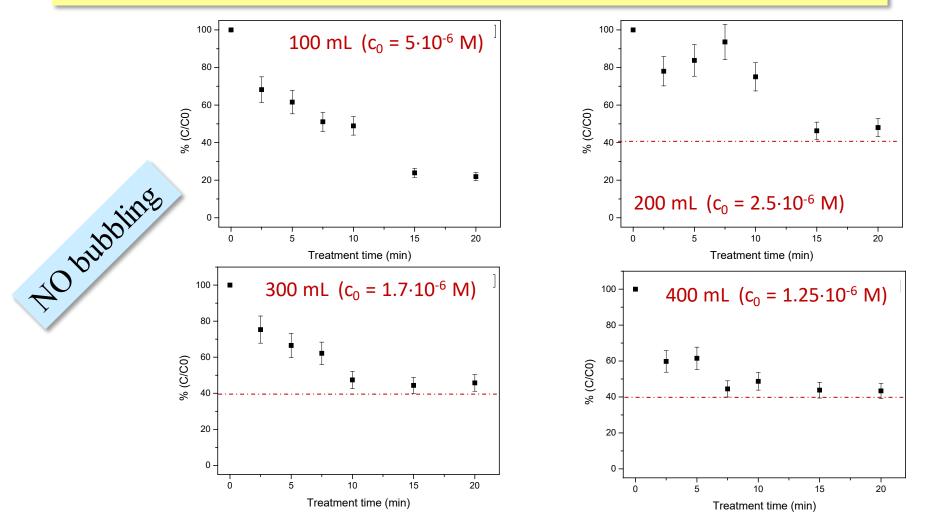
In terms of:

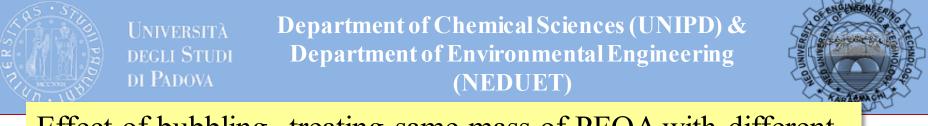
- **1. Residual PFOA and byproducts:** accounts for less than 10% of the carbon initially present as PFOA.
- 2. Dissolved Fluoride: 58.5 % with respect to the initial total fluoro contained in PFOA
- **3.** Produced CO₂: was measured by GC-TCD recirculating Ar gas in a sampling bag during the treatment
- 4. Volatile by products ?
- 1. Undetected byproducts?


Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

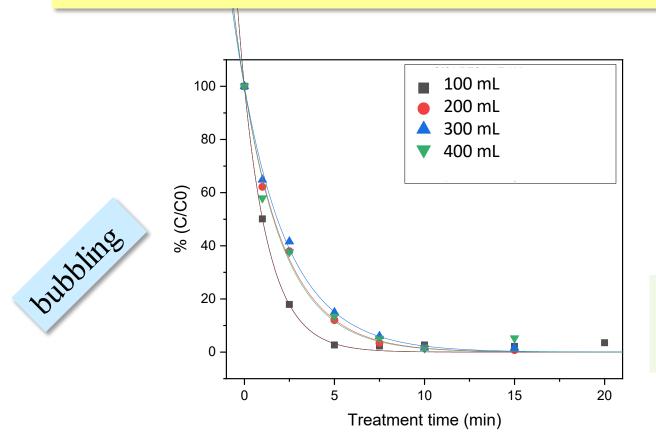
Effect of treated volume on energy efficiency

- ➢ For 400 mL solution volume
 - Highest $G_{50} = 2155 \text{ mg/kWh}$
- Energy efficiencies can further be improved for higher treated volumes
- PFOA = 4.14 mg/L (10⁻⁵ M)
- Argon = 200 mL/min
- Volume = 100 400 mL


Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

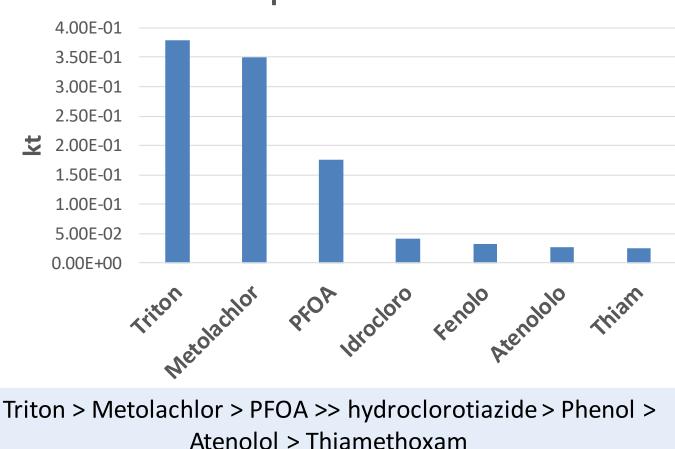


Effect of bubbling- treating same mass of PFOA with different volumes


UNIVERSITÀ

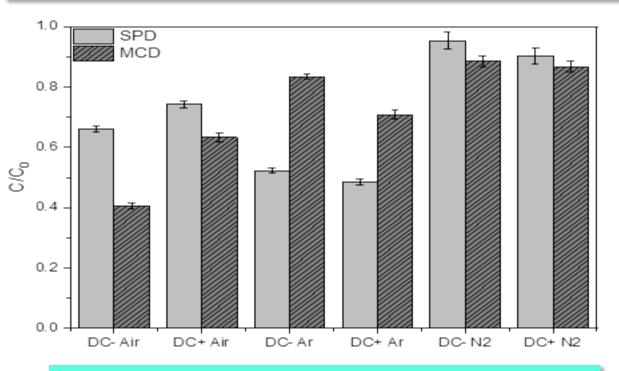
DI PADOVA

Effect of bubbling- treating same mass of PFOA with different volumes


Bubbling is very effective in moving PFOA towards the plasma-liquid interface

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Performance of RAP with different compounds


kt esperiment 10⁻⁴ M

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Dimethyl phthalate (DMP) removal in SPD and MCD reactors

Effect of:

type of plasma discharge (SPD or MCD) voltage polarity (-ve or +ve) Plasma feed gas (Air, Argon and Nitrogen) (input power = 1.5 W, treatment time = 15 min)

Self-pulsing Discharge (SPD)

Multipin Corona Discharge (SPD)

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Current Challenges

> Tailoring Plasma Solutions to Contaminant Challenges

- Meeting Regulations: Standalone or Treatment Train Approach?
- Surface Behavior of Lower Chain PFAS: Reduced Activity and Kinetics
- Long-Term Performance of plasma systems?

Department of Chemical Sciences (UNIPD) & Department of Environmental Engineering (NEDUET)

Thank you for your attention

