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Plasma nanotechnology for clean energy, green chemistry,
and zero-carbon future

Kostya (Ken) Ostrikov



Pathway to clean energy transition: de-carbonize power first

A net-zero greenhouse gas economy will be built on abundant,

affordable zero-carbon electricity. Achieving massive electrification and early
power decarbonisation — ahead of economy-wide decarbonisation - must be at
the heart of all countries’ paths to net zero. www.energy-transitions.org

Deployment stages of technologies for massive clean electrification
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Innovatlons to decarbonlze materials
Industries oo November 2021

Katrin Daehn®’, R. Basuhi', Jeremy Gregory@?, Maya Berlinger', Vrindaa Somjit(’
and Elsa A. Olivetti('=

[able 1| Global CO, emissions associated with the production of different materials

Material Global CO, Global CO, emissions Current global average  Global production Business-as-usual
emissions associated with production  specific CO, intensity in 2017 (Mt per year) demand in 2050
associated with in 2017 (Mt CO, per year) (kgCO, t* material) (Mt per year)
production in
2000 (Mt CO,
per year)""

Cement 1,588 2,200 (direct)” 860 (OPC with additional 4,050 (REF** 4,682 (REF”)

processing)™; 540 (direct)”

Steel and iron 1,319 3,700(2,600 direct)” 2,000 (1,400 direct)”’ 1,736 (total crude 2,100 (final end-use);

steel)?? 2,535 (crude steel)”’

Aluminium 324 1,000 (REE*) 14,400 (primary)*** 64.3 (primary)* 92 110 (primary)**% 175

(plus secondary)’** (plus secondary)*
Copper 47 (REF™Y) 70 (average CO, intensity 3,500 (REF1) 20 (REF) 50 (REF*)
multiplied by production
in2017)

Petrochemicals 2,013 1,500 (REF%) 1,700 (REF%) 960 (REF2 1,500 (REF2)



Electrify to Decarbonize: Clean Electrification for
Future Zero-Carbon Economy and Environment

Electrifying industry and society by

using renewable energy, innovating key 9 ‘
carbon-emitting processes to achieve

zero- (or even negative) carbon I ,
emissions without raising cost of i _‘.’_
products (otherwise inevitable to fund I v
decarbonisation) by using renewable

feedstocks (e.g., waste) and raising ra®
product values in targeted market C <
segments

K. Ostrikov & A. O’Mullane (since ~2016): a vision for Australian

Electro-Photo-Futures
4



a @O Process electrification

Renewable energy
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Paradigm shift: from traditional structure— property — performance
to structure/composition — e-processing — property — performance
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The PP2X Approach: Plasma e-Power ,l\P LASMA -
to e-Products to de-Carbonize :
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Up-carbonization: From Atomic- to Macro- via Nano-scales

Digital design
and control
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Plasma-electrified up-carbonization for low-carbon clean energy. Carbon Energy 5, €260 (2023).
DOI: 10.1002/cey2.260 Plasmas, with the unique electricity-enabled physiochemical properities,
electrify the conversion and up-carbonization of carbon-rich feedtsock into the higher-energy state and
further create value-added products, such as clean energy, high-performance advanced carbon-based
energy materials, high-value platform chemicals, customized manufactured products, etc. 7



Re-carbon, up-carbon, de-carbon: plasma-electrified roll-to-roll cleaner
production of vertical graphenes and syngas from greenhouse gases

[ Re-carbon: re-use of GHGs ] @ .
De-carbon: Reducing the | CH, QK co
growth temperature of VGs ~ 0 —

analysis | co, H,
De-carbon: Using the as-produced VG growth mechanism

VGs for clean energy storage

00000000 penlll

} I
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Large-scale VGs Energy storage épplication

[Up-carbon: GHG conversion intol

¢
c.o, . . o high value carbon baed prduets S
® Digital data analysis Lal 5 (i
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Intergrated de-carbon, re-carbon and up-carbon approach for conversion of GHGs into high-value
functional nanocarbon materials, fuels and chemicals, while reducing the assocaited carbon emissions.

CARBON 197, 301 (2022); DOI: 10.1016/j.carbon.2022.06.024 8
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WATER DESALINATION & PURIFICATION [Nature Comm. 4, 2220 (2013)]
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Atmospheric-pressure plasma seawater desalination: Clean energy,
agriculture, and resource recovery nexus for a blue planet

Sustainable Materials and Technologies 25 (2020) e00181
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Power-to-decarbonization: mesoporous carbon-MgO nanohybrid derived
from plasma-activated seawater salt-loaded biomass for efficient CO,
capture [Journal of CO, Utilization 53, 101711 (2021)]

i Renwewable energy

Povyer to decarbonlzatlon

3T
1

e Novel sustainable CO, capture through material recovery from sea water and biomass
e Highly reactive species from plasma enhances the surface area of obtained materials.
e N-containing species on the carbon-MgO nanohybrid enhances the CO, capture.

e Dispersion and surface crystallization of MgO are important for CO, adsorption.



Green Chem. 24, 7410 (2022), DOI: 10.1039/d2gc01303g
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Plasma production of carbon dots and hydrogen
(Chem. Eng. J. 2019, DOI: 10.1016/j.cej.2019.122745)
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A favourable combination of low temperature (< 40 °C), attractive conversion rate (gas flow rate of ~120
mL/min), high hydrogen yield (H, content > 90%), low energy consumption (~0.96 kWh/m?H,) and the
effective generation of photo-luminescent GQDs in the MSM indicate that the proposed strategy may
offer a new carbon-negative avenue for mitigating the energy and environmental issues.



Monochromatic Blue and Switchable Blue-Green Carbon
Quantum Dots by Room-Temperature Air Plasma Processing
Collaboration with Griffith Uni (Prof. Q. Li)

ADVAN?ED DOI: 10.1002/admt.202100586
TECHNOLOGIES ~ Adv. Mater. Technol. 2021, 2100586

Air Plasma

L

RISA Excimeriformation




lon sensing for environmental
applications
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A fast, effective, and single-step method
is developed for the bulk synthesis of
monochromatic blue and switchable
blue-green carbon quantum dots (CQDs)
by room-temperature air plasma process-
ing, and the emission mechanisms are
revealed. A proof-of-principle demonstra-
tion of fluorescence sensing of Cu?* ions
opens new opportunities for CQDs appli-
cations in environmental and biomedical
sensing.
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From solar photons to chemical bonds:
activating liquids, reforming biomass
(renewable energy + modular PP2X reactors) §S

From Solar

(

Insulating plate
Gas outlet 4 J,

Pulsed high
voltage electrode

. 3 §
Supercapacitor 28,
Big thanks to Renwu ¢ ;
Zhou, Rusen Zhou, 7

and Zhi Fang .
For (e-,p-,bio-)fuels and energy storage *™




Sustainable Ammonia Synthesis from Nitrogen and Water by One-Step Plasma Catalysis,
Energy Environmental Mater. 6, 12344 (2023), DOI: 10.1002/eem2.12344
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Scaling up: Multiscale Plasma-Catalytic On-Surface Assembly
[Small (2020), DOI: 10.1002/smll.201903184]

Larger scale, Higher pressure, Faster processing, -

Patterns, arrays Fast, precise, cost-effective, / /
— iy energy efficient, low / zero carbon

Renewable energy
for plasma generation

Micro-to-macroscales » V. P— turing

Digital control, automation Precursors
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atomic site / bond
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nature ARTICLES

climate Chﬂ.ﬂgc hitps://dol.org/10.1038 /541558-021-01089-4

M) Check for updates

OPEN
The blue carbon wealth of nations

Christine Bertram', Martin Quaas(©2, Thorsten B. H. Reusch©?, Athanasios T. Vafeidis©4,
Claudia Wolff4 and Wilfried Rickels 122

Carbon sequestration and storage in mangroves, salt marshes and seagrass meadows is an essential coastal ‘blue carbon’ eco-
system service for climate change mitigation. Here we offer a comprehensive, global and spatially explicit economic assess-
ment of carbon sequestration and storage in three coastal ecosystem types at the global and national levels. We propose a new
approach based on the country-specific social cost of carbon that allows us to calculate each country’s contribution to, and
redistribution of, global blue carbon wealth, Globally, coastal ecosystems contribute a mean + s.e.m. of U$$190.67 + 30 bnyr~!
to blue carbon wealth. The three countries generating the largest positive net blue wealth contribution for other countries are
Australia, Indonesia and Cuba, with Australia alone generating a positive net benefit of US$22.8 + 2.8 bnyr ™ for the rest of the
world through coastal ecosystem carbon sequestration and storage in its territory.

Kiel Institute for the World Economy, GEOMAR Helmholtz Centre for

Ocean Research Kiel, Kiel University, Germany
20
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Positive and negative net wealth redistributions (in US$ bn yr ljﬁﬁ
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What to do with it? Huge potential for wealth creation
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AP ey - CO2 capture and up-

e B carbonization in water:
plasma and liquid
. metal catalyst convert
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CO, Reduction
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Schematic outlining the mechanism for CO, conversion into solid carbon starting with CO, introduction to the Ga
solution (left side) followed by O, creation and CO, activation by plasma together which is followed by adsorption
on the catalyst surface where oxygen dissociation from CO, takes place (middle), and finally depiction of the
carbon-rich catalyst surface after plasma treatment (right side). Collab. with A. O’'Mullane and team.



Plasma nano-decarbonase: summary

* (CTOSS=aIScIplinaryresearcn ared

* rUncemenial rlasmaaspeciﬁr PIOCESSES

Plasma interactions with otfierstates-ormatter- =
g fl\/lagygﬂﬁmue functional nanomaterials are enabled M |
. rCondﬁ«ms wJaej‘é' methods often fail
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:}ﬁ decarbonlze for zero- carbon efmssmns world
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