

Influential phenotypic traits of living cells & tissues using atm cold plasma source as biocatalysts

Technical Meeting on Emerging Applications of Plasma Science and Technology Sep 19 – 22, 2023 IAEA Headquarters

Dheerawan Boonyawan

Plasma & Beam Physics Research Facility

Contents

- Cold plasma as Biocatalyst
- Mild-Biocatalyst
 - Tissue culture and seed
- Moderate-Biocatalyst
 - Fish egg
 - Poultry
- Nightingale®: Plasma medicine
- Perspectives

1. Cold plasma as biocatalyst

Mechanisms of delivery of reactive oxygen and nitrogen species (RONS)

4

(Bio)catalysis

Kim H., et al Plasma Chem Plasma Process, 2015

2. Mild Biocatalyst

MECHANNE

Plasma generation & analysis

(a) H_{α} fit and (b) n_e as a function of pulse width & pulse repetition rate.

(

Afterglow (air) Plasma chemistry

$O_2(a)+O_3 \rightarrow O_2+O_2+O_2$	$(1.00 \times 10^{-10}) \exp(-0/T_a) [cm^3/s]$		2.2	→ NO ' '	· · ·	· · ·
N+OH → H+NO	$(4.70 \times 10^{-11}) \exp(-0/T_g) [cm^3/s]$		2.0 -	→ Ozone		<u> </u>
$N+O_2 \rightarrow NO+O_2$	(8.20×10 ⁻¹¹) exp(-410/T _g) [cm ³ /s]		1.8 -			
$OH+O \rightarrow H+O_2$	(1.81×10 ⁻¹¹) ((T _g /300) ^{-0.31}) exp (177/T _g [cm ³ /s]	(9	1.6 -			/ .
$H+O_3 \rightarrow OH+O_2$	$(2.71 \times 10^{-11}) ((T_g/300)^{0.75}) \exp(-0/T_g) [cm^3/s]$	s/md	1.4 -		-	
$OH+O \rightarrow H+O_2$	$(1.81 \times 10^{-11}) ((T_g/300)^{-0.31}) \exp(177/T_g) [cm^3/s]$	ld) e	1.2 -		_	-
H+NO ₂ → OH+NO	(4.00×10 ⁻¹⁰) exp(-340/T _g) [cm ³ /s]	rate	1.0 -			-
O_2 +N \rightarrow NO+O	$(3.30 \times 10^{-12}) (T_g/300) \exp(-3150/T_g) [cm^3/s]$	tion	0.8 -	I		-
$N+NO_2 \rightarrow NO+NO$	$(1.33 \times 10^{-12}) \exp(220/T_g) [cm^3/s]$	onpo	0.6 -	Í		-
$NO+N \rightarrow N_2+O$	(8.20×10 ⁻¹¹) exp(-410/T _g) [cm ³ /s]	Pro	0.4	*		2
$NO+O_3 \rightarrow NO_2+O_2$	(4.30×10 ⁻¹²) exp(-1560/T _g) [cm ³ /s]	0	0.050		I	
$NO+O+N_2 \rightarrow NO_2+N_2$	(1.00×10 ⁻³¹) ((T _g /300) ^{-1.6}) [cm ⁶ /s]	0	.025 -	I	I	
$NO+NO_3 \rightarrow NO_2+NO_2$	$(1.80 \times 10^{-11}) ((T_g/300)^{-0.31}) \exp(177/T_g) [cm^3/s]$	0	0.000 -			
				1.0 1.5	2.0 f (kHz)	2.5 3.0

P. Thana et al. Heliyon 2019

Medium chemistry

NO and O_3 dissolv	/e		1	
$O_3 + H_2 O \rightarrow H_2 O_2 + O_2 \longrightarrow$	$H^{\bullet} + O_2 \xrightarrow{\longrightarrow} H^{\bullet}$ (3) $HO_2^{\bullet} \leftrightarrow H^+ \xrightarrow{\rightarrow} H^+$	$IO_2 \bullet$ + $O_2 \bullet^- (pKa = 4.8)$		
$4\text{NO+O}_2+2\text{H}_2\text{O} \rightarrow 4\text{H}^++4\text{NO}_2^-$	(4)	Substance	Formula	Oxidation State of Nitrogen
$2NO_2+H_2O \rightarrow 2H^++NO_2^-+NO_3^-$ reduced pH	(5)	Ammonia Hydrazine Hydride Dinitrogen gas Nitrous oxide Nitric oxide Dinitrogen trioxide Nitrogen dioxide Nitrogen Pentoxide	$\begin{array}{c} NH_{3} \\ N_{2}H_{4} \\ N_{2}H_{2} \\ N_{2} \\ N_{2} \\ N_{2} \\ N_{2} \\ N_{2} \\ O \\ NO \\ NO \\ NO_{2} \\ N_{2}O_{5} \end{array}$	-3 -2 -1 0 +1 +2 +3 +4 +4 +5

Zigya.com

 $75\% H_2 + 25\% N_2$

Top view,

Kosumsupamala, K., et al. (2022) Air to H2 N2 Pulse Plasma Jet for In Vitro Plant Tissue Culture Process: Source Characteristics *Plasma Chemistry and Plasma Processing*, 42(3).

Gap = 5 mm, Flow = 4 slm 0.5% Gel Treatment = 1 min

Air

Plasma (radicals) in-vitro

Gliding Arc Plasma

Dissolve

Spectrometer: Exemplar LS; BWTEK Inc., United States (200 to 850 nm) with Integration time: 5000 ms

Typically plants need;

Ideal conditions

for plant germination and growth: pH : 4.5 - 6.5NO₂⁻/NO₃⁻: 50 - 300 ppm H₂O₂: 0.1 - 10 ppm

Plasma treatment

of water stimulates growth making: pH: 2.5 – 6.5 NO_2^{-}/NO_3^{-} : 10 - 500 ppm H_2O_2 : 0.01 - 100 ppm

Source: Fridman G., IFFM 2015

Radicle Emergence

17

Time	Control	10 min	15 min	20 min
24 hr				
48 hr				
72 hr				

Rice germination at 10 day

Rice germination at 14 day

Control

10 min

15 min

20 min

Plasma

fertilizer

Table 1 Growth characteristics of green oak.

			Plant gro	wth			
	(42 days after planting)						
Treatments ¹	Plant height	Plant height Leaf width Canopy		No loovos	Root length	SDAD	
	(cm)	(cm)	(cm)	110.164765	(cm)	SIAD	
Hoagland	19.42 a	14.50 a	29.17 a	14.50 a	24.57 a	21.98 b	
Hoagland (NO ⁻ ₃ = 0)	13.00 b	7.17 b	15.67 b	6.67 b	16.37 b	19.93 c	
Plasma fertilizer	18.00 a	14.75 a	28.33 a	17.00 a	18.55 b	25.43 a	
CV (%)	13.15	22.83	15.12	16.59	17.75	4.81	
LSD _{0.05}	2.72	3.41	4.54	2.60	4.33	1.33	

21

Results

¹Means in the same column followed by different letters are significantly different ($p \le 0.05$) by LSD

SPAD = Leaves color intensity

Leksakul, K., et al. (2021) Generating nitrate and nitrite on green oak lettuce in hydroponic farming by plasma system *Applied Engineering in Agriculture*, 37 (1)

Table 2 Photosynthesis rate and fresh weight of green oak.

	Harvesting stage					
Treatments ¹	Photosynthesis rate	Fresh weight shoot	Fresh weight root			
	(µmol <mark>m⁻² s⁻¹)</mark>	(g)	(g)			
Hoagland	2 <mark>.09</mark> b	52.55 a	7.29 a			
Hoagland (NO ⁻ ₃ = 0)	0 <mark>.72</mark> с	6.29 b	1.34 b			
Plasma fertilizer	3.02 a	63.84 a	7.02 a			
CV (%)	33.67	37.74	46.92			
LSD _{0.05}	0.80	18.99	3.01			

¹Means in the same column followed by different letters are significantly different ($p \le 0.05$) by LSD

3. Moderate Biocatalyst

tudy of color changing in NileTilapia / Oreochromis niloticus / Inducedby Plasma activated water

Treatments

Treatment	Plasma	No. HE
Τ1	control	264
T2	10s	264
Т3	20 s	264
T4	30 s	264
Total		<u>1,056</u>

Breed: crossbred native chickens Pradu Hang Dam Age of hatching egg 36/14 wp.

Sakulthai, et al.(2023) Improving the efficiency of crossbred Pradu Hang Dam chicken production for meat consumption using cold plasma technology on eggs. *Scientific Reports* 13, 2836

plasma exposed on day 4th of incubation

Candling day 18 of incubation

Infertile egg

22

echnology

Early-mid-late dead egg

Fertile egg

30

Data collection

- ➢ %Hatchability
- > Day old chick weight
- ➤ Shank length

22

echnology

Treatment	Plasma	ratio male	ratio female
Т1	Control	51.05	48.95
T2	10s	48.30	51.70
Т3	2 0s	54.79	45.21
T4	30 s	58.67	41.33
Avg.		<u>53.20</u>	<u>46.80</u>

Growth performance

2			0-7 day	0-14 day	0-21 day	0-28 day	0-35 day	0-42 day
gai	Male	T1	53.00	152.00	268.00	418.00	558.00	750.00
		T2	52.33	152.33	275.33	432.33	595.33	794.33
		Т3	52.00	153.00	282.00	429.00	586.00	813.00
+		T4	52.33	151.33	277.33	426.33	576.33	778.33
	Female	T1	50.67	139.67	237.67	366.67	494.67	652.67
5		T2	50.67	140.67	239.67	372.67	506.67	681.67
		Т3	50.79	138.79	242.79	365.79	494.79	666.79
O		T4	50.85	135.85	236.85	362.85	479.85	645.85
		•						
			0-7 day	0-14 day	0-21 day	0-28 day	0-35 day	0-42 day
	Male	T1	7.57	10.86	12.76	14.93	15.94	17.86
		T2	7.48	10.88	13.11	15.44	17.01	18.91
Ē		T3	7.43	10.93	13.43	15.32	16.74	19.36
		T4	7.48	10.81	13.21	15.23	16.47	18.53
	Female	T1	7.24	9.98	11.32	13.10	14.13	15.54
		T2	7.24	10.05	11.41	13.31	14.48	16.23
		T3	7.26	9.91	11.56	13.06	14.14	15.88
		T4	7.26	9.70	11.28	12.96	13.71	15.38

Growth performance

34

4. Cold Plasma in Medicine

Air Plasma Jet Device

"Nightingale®"

Applications

- Wound healing¹
- Tissue Culture²
- Cancer therapy

DC pulse in burst mode with 2-kHz repetition rate, voltage 2 kV, number of pulses (NP) at 4, 7, and 10, pulse width (PW) 1 us at 10 us pulse delay (PD) and flow rate of air 5 l/min (plasma dissipated power at 0.28, 0.43 and 0.62 W).

¹*Thana et al., 2019.* ²*Kosumsupamala et al., 2022 http://innoplascm.com*

Radicals flow simulation

TECHNICAL FEATURES

220-240 Vac 50-60 Hz.

Capacitive - Not in contact

< 50 VA (Watt) Max

11L/min -

0,4A (50H

2 Fuse 5x

1 Fuse.5x

I - TYPE I

TIMED

ISO 9001: 2015 EN

EN 60601-1: 2006 / / EN 62304:2006/A1:2 IEC 62304:2006/A1:2 EN 60601-1-2: 2015

Pulsed at 1uSec - 93 KHz Modulation

- 80 VA

2020-6

A

Input Voltage Output RF Frequency

HF transfer mode

Output power Air Flow

Power line absorption

Line protection Fuse

Internal protections

Activation command

Class protection and Type

Manufacturer Certification Reference Standard :

Included (Standard CEI 62-39 - Class. CEI 62-39 tion - Electrical appliances for aesthetic use. Gene ard CEI EN 60601-2-3 - Class. CEI 62-14 - CT 62 Medical electrical equipment - Part 2: Particular ru vices + VARIANT: CEI EN 60601-2-3 / A1 - Class 1999 and related variants.)

TECHNICAL LABEL

Compact Air Pl Technical Features Input Voltage: 220-24 2 x F: Line protection Fuse: **Output RF Frequncy:** Pulse Air Flow 11 L/m Transfer Mode: Capac <50 V **Output Power:** 0.40 **Power Line Absorption: Class Protection and Type:** I - TYPE B -- IPXO Software: SWPLCP-Rev0 Mat/ LOT: PLCP XXXXXX - I InnoPlasCM CO.,Ltd 3FL Central Science Laboratory Chiang Mai University

Inno Plas CM

e properties

38

Nit	Nitric Oxide (ppm)						
1	Power 2	Power 3					
	24.39	38.78					
	24.49	42.11					
	26.07	41.55					
	26.28	44.15					
	23.73	37.10					

	Ozone (ppm	
	1 Power 2	Power 3
	0.0404	0.0421
	0.0950	0.0631
	0.1936	0.1275
0.4485	0.3484	0.2726
0.5593	0.5392	0.4871

* Measured at1 cm distance

711 4

Air 5

Bacteria inactivation

Methicillin-resistant S. Aureus (MRSA) Thana P., et al. A compact pulse-modulation air plasma jet for the inactivation of chronic wound bacteria: Bactericidal effects & host safety (2020) *Surface and Coatings Technology*, 400, art. no. 126229,

II : Cell cytotoxicity

The apoptotic induction of HDF cells

To examine the apoptotic induction after plasma treatment.

The derived percentage of cells showed no significant induction on any states of apoptosis or necrosis. For the controls and the plasma-treated samples, the percentages of early, late and total apoptotic cells were 2-3%, 4-10% 6-11%, respectively. While, 10% of DMSO was used as a positive control of apoptosis induction.

II : Cell cytotoxicity The intracellular nitric oxide level in HDF cells

Air plasma jet increased intracellular nitric oxide level.

41

II : Cell cytotoxicity The reactive oxygen species in HDF cells

But Air plasma jet not induced reactive oxygen species in HDF cells.

Lately Clinical Trial

60 days fully recovered/healed - twice a week

Lately Clinical Trial

50 days fully recovered/healed

6 months : Healed

Vet Clinical Trial

Vet Clinical Trial

Conclusion & Perspectives

- The amounts of plasma-produced radicals can be controlled by varying the pulse width, pulse repetition rate, plasma generation time, and plasma gas composition.
- Proper dose for each level of bio-catalysis to be intensively studied: in-vitro/in-vivo.

For medicine, the human security/assessment concern:

- Curious study at the biomolecular level to be carried out/ continued.
- Also, cold plasma processing could be adopted/scaled up for near-future applications.

