EPFL

Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning

Brendan Tracey - Google DeepMind, London

on behalf of the DeepMind-EPFL team

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Ian Davies, Andrea Michi, Yuri Chervonyi, Pushmeet Kohli, Koray Kavukcuoglu, Demis Hassabis & Martin Riedmiller

Workshop on AI for Accelerating Fusion and Plasma Science November 2023

SWISS PLASMA CENTER

Axisymmetric Equilibrium Control

Axisymmetric Tokamak Plasma Control

• Need to control:

- Total plasma current I_p
- Radial position R (by vertical magnetic fields)
- Vertical position Z (by radial magnetic fields *unstable for elongated plasmas*)
- Plasma shape: Last Closed Flux Surface (LCFS)

Traditional Solutions

- 1. Choose combinations of coils to use to control each quantity
- 2. Pre-compute feedforward coil currents and voltages
- 3. Design feedback controllers
- 4. Tune individual control parameters for each (hopefully orthogonal) control loop

Reinforcement Learning Solution

- Single Integrated Controller
- No feedforward generation
- No separate error estimation

Reinforcement Learning

[Figure and RL slide material from hereon: courtesy A. Abdolmaleki]

Learn an action selection function (π) through <u>trial-and-error</u> to achieve high reward

What is an environment?

Environment

19 Actions: Control Coil Voltages

TCV Tokamak

Training on Hardware is Impractical

Training Environment

FGE Simulator [Carpanese EPFL PhD 2020]

- Free boundary Grad-Shafranov solver
- Circuit equations for conductors

Full Simulation Model

- A lot of physics/engineering know-how goes into the simulator
- Need for domain experts: plasma physicists / tokamak engineers & modelers

EPFL

Goals

Keep the plasma alive Stabilize the plasma location Shape Control

Shot 66308: (0.024s real time) Shot 66725: (0.55s real time)

Reward Design

Goals

Keep the plasma alive
Stabilize the plasma location
Shape Control

Stabilize:

- R Centroid
- Z Centroid
- Plasma Current (Ip)

Stabilizing the position through control Shot 70361: 0.55s real time

Reward Design

Goals

Keep the plasma alive
Stabilize the plasma location
Shape Control

$$\texttt{SoftPlus}(x) = [2 \cdot \sigma (f_{\text{scale}}(x, \texttt{good}, \texttt{bad}, 0, \zeta)]_0^1,$$

$$\texttt{SmoothMax}(x_{1...n}, w_{1...n}, \alpha) = \frac{\sum_{i=1}^{n} w_i x_i e^{\alpha x_i}}{\sum_{i=1}^{n} w_i e^{\alpha x_i}}.$$

Shape Control – Must match:

- 1) Target shape outline
- 2) Active X-point location
- 3) Passive X-point locations
- 4) Leg locations
- 5) Plasma current

Whilst maintaining OH coil current stability

What is an Agent?

Aim

Find optimal policy – maximize discounted sum of future rewards

EPFL

State-action value function maps an action in a given state to expected rewards.

$$\mathbf{Q}^{\boldsymbol{\pi}}(\mathbf{s}_{\mathbf{t}}, \mathbf{a}_{\mathbf{t}}) = \mathbb{E}_{\boldsymbol{\pi}}\left[\mathbf{r}_{\mathbf{t}} + \gamma \mathbf{r}_{\mathbf{t+1}} + \gamma^2 \mathbf{r}_{\mathbf{t+2}} + \dots | \mathbf{s}_{\mathbf{t}}, \mathbf{a}_{\mathbf{t}} \right]$$

It is equal to **expected total discounted reward** for an agent starting from state **s** and performing action **a** and following its **policy**.

Actor-Critic Methods

Critic estimates the *Q function* from data generated by interacting with environment

 Actor learns a policy π by ascending (via gradient-based methods) the *Q function* learned by the critic

Actor-Critic Methods

Critic estimates the *Q function* from data generated by interacting with environment

 Actor learns a policy π by ascending (via gradient-based methods) the *Q function* learned by the critic

- Actor critic approaches allow asymmetry between actor and critic
 - The critic can benefit from privileged information unknown to the actor

Actor-Critic Methods

Critic estimates the *Q function* from data generated by interacting with environment

 Actor learns a policy π by ascending (via gradient-based methods) the *Q function* learned by the critic

- Actor critic approaches allow asymmetry between actor and critic
 - The critic can benefit from privileged information unknown to the actor

 We use Maximum A Posteriori Policy Optimisation (MPO, Abdolmaleki et al. 2018)

Creating an Agent

Creating an Agent

Deployment

Deployment mostly just worked!

Iterations on reward design needed to achieve stability

Simulator upgrades required to attain a successful agent

Targeted environment variation:

Measurement noise

Plasma parameters (resistivity, plasma pressure ratio ...) Power supply

Result - demonstration shot

Demonstration shot

Various plasma shapes controlled in in TCV with RL

EPF

Opening new frontiers for TCV: Droplet plasmas

Exploration Challenges

Chunk (3k)	Chunk (3k)	Chunk (3k)
Episode (10k steps)		

Chunk (3k)	Chunk (3k)	Chunk (3k)	
Episode (10k steps)			

Transfer Learning

EPFL

Shift Shape

Shape Accuracy

LCFS Error

Experiment	I_p Error (%)	LCFS Mean RMSE (cm)
Baseline	0.353 ± 0.221	0.567 ± 0.221
Narrow Reward	0.238 ± 0.076	0.201 ± 0.057
Reward Schedule	0.450 ± 0.321	0.490 ± 0.196

X-point accuracy

Experiment	I_p Error (%)	LCFS Mean RMSE (cm)	X-point Location Error (cm)
Baseline	0.848 ± 1.710	1.122 ± 1.460	0.669 ± 0.491
X-Point Fine Tuned	0.717 ± 0.624	0.845 ± 0.097	0.289 ± 0.027
Narrow X-Point Reward	6.143 ± 4.602	4.536 ± 3.268	1.199 ± 1.102
Additional Training	0.502 ± 0.423	0.723 ± 0.159	0.541 ± 0.112

Hardware Shape Accuracy

LCFS Error

X-point accuracy

Summary

- Large Opportunities available in speeding up design
 - If can avoid the exploration problem Do!
 - Can jumpstart training from pre-existing data

Need to be careful with treating results in simulation as truth

- Can significantly increase accuracy in sim
- Need to push again on improving sim2real transfer

Contrasting Classic Control and RL

EPFL

Traditional controllers (MIMO PID)	Reinforcement Learning Implementation
Separate error for each control loop	Single reward function
Error computed online	No explicit error signals or estimation
Separate complex state estimators and tuning of multiple control loops	Joint (and potentially generalising) solution to entire stabilization/control problem
Domain knowledge required for problem definition and separate controller design	Domain knowledge is in simulator. Just define reward functions
Tuning of several control parameters	Reward function engineering
(Usually) Clear relation between parameters and aspects of control performance	Black-box agent
Integral control nominally gives zero steady-state error on desired quantities	No certainty of zero steady-state errors in case of external disturbances

• Generalist agents - No need to retrain for new references

 Expand simulator capabilities to broaden the horizon of possibilities

• Co-design: simultaneously optimize tokamak design (plasma shape, sensors, coil, vessel placement) together with controller

Conclusions

- Demonstrated RL for closed-loop magnetic control of tokamak plasmas, trained in simulation and <u>tested on a real device</u>
 - Implementing 10kHz controller with 100+ measurements, 20 actions is a milestone for RL on real-world systems in terms of complexity
 - Models are sufficiently accurate to perform the required simulations

Bright future for more applications of RL

- For accelerating fusion science: improving plasma performance & design new devices
- For application to more complex real-world systems, in particular where good models exist

Successful multidisciplinary collaboration!

Tight integration between teams to understand and control this challenging system

