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Axisymmetric Equilibrium Control

Controller
(10kHz)

19 voltage commands

~100 magnetic sensor
measurements



 

Axisymmetric Tokamak Plasma Control

• Need to control:
• Total plasma current Ip

• Radial position R (by vertical magnetic fields)
• Vertical position Z (by radial magnetic fields - unstable for elongated plasmas)
• Plasma shape: Last Closed Flux Surface (LCFS)



 

Traditional Solutions

1. Choose combinations of coils to use to control each quantity
2. Pre-compute feedforward coil currents and voltages
3. Design feedback controllers
4. Tune individual control parameters for each (hopefully orthogonal) 

control loop



 

Reinforcement Learning Solution

• Single Integrated Controller
• No feedforward generation
• No separate error estimation



 

Reinforcement Learning

Learn an action selection function (𝝅) through trial-and-error to 
achieve high reward

[Figure and RL slide material from hereon: courtesy A. Abdolmaleki]



 

What is an environment?

Actions

Observation

Reward



 

Environment

19 Actions:
Control Coil Voltages

Reward

92 Observations:
● 34 Flux Loops
● 38 Magnetic Probes
● 20 Coil Currents

TCV Tokamak

Training on Hardware is Impractical



 

Training Environment

19 Control Coil 
Voltages

Reward

92 Observations:
● 34 Flux Loops
● 38 Magnetic Probes
● 20 Coil Currents

FGE Simulator [Carpanese EPFL PhD 2020]
● Free boundary Grad-Shafranov solver
● Circuit equations for conductors



 

Full Simulation Model

targets

measurements

reward

• A lot of physics/engineering know-how goes into the simulator
• Need for domain experts: plasma physicists / tokamak engineers & 

modelers



 

Reward Design

Goals

1. Keep the plasma alive
2. Stabilize the plasma location
3. Shape Control

Shot 66308:
(0.024s real time)

Shot 66725: 
(0.55s real time)



 

Reward Design

Goals

1. Keep the plasma alive
2. Stabilize the plasma location
3. Shape Control

Stabilize:
- R Centroid
- Z Centroid
- Plasma Current (Ip)

Stabilizing the position through control
Shot 70361: 0.55s real time



 

Reward Design

Goals

1. Keep the plasma alive
2. Stabilize the plasma location
3. Shape Control

Shape Control – Must match:

1) Target shape outline
2) Active X-point location
3) Passive X-point locations
4) Leg locations
5) Plasma current

Whilst maintaining OH coil current stability



 

What is an Agent?

Actions

Observation

Reward



 

Tokamak Agent

Actions

Observation:
Measurements
Shape Targets

Reward:
Shape Quality

Actions

Aim
Find optimal policy – maximize discounted sum of future rewards



 

Q Function: State-Action Values



 

Actor-Critic Methods

• Critic estimates the Q function from data generated by interacting 
with environment

• Actor learns a policy π by ascending (via gradient-based methods) 
the Q function learned by the critic



 

Actor-Critic Methods

• Critic estimates the Q function from data generated by interacting 
with environment

• Actor learns a policy π by ascending (via gradient-based methods) 
the Q function learned by the critic

• Actor critic approaches allow asymmetry between actor and critic
• The critic can benefit from privileged information unknown to the actor



 

Actor-Critic Methods

• Critic estimates the Q function from data generated by interacting 
with environment

• Actor learns a policy π by ascending (via gradient-based methods) 
the Q function learned by the critic

• Actor critic approaches allow asymmetry between actor and critic
• The critic can benefit from privileged information unknown to the actor

• We use Maximum A Posteriori Policy Optimisation
(MPO, Abdolmaleki et al. 2018)



 

Creating an Agent

Learning Loop



 

Creating an Agent

Learning Loop

Deployment



 

Transferring simulation-trained agents to the TCV tokamak

Deployment mostly just worked!

Iterations on reward design needed to achieve stability

Simulator upgrades required to attain a successful agent

Targeted environment variation:
Measurement noise
Plasma parameters (resistivity, plasma pressure ratio …)
Power supply 



 

Result - demonstration shot



 

Demonstration shot



 

Various plasma shapes controlled in in TCV with RL



 

Opening new frontiers for TCV: Droplet plasmas



 

Exploration Challenges



 

Episode Chunking

Episode (10k steps)

Chunk (3k) Chunk (3k) Chunk (3k)



 

Episode Chunking

Episode (10k steps)

Chunk (3k) Chunk (3k) Chunk (3k)



 

Transfer Learning

Shift Shape Shift Ip 

2cm

10cm

20cm

10kA

20kA

50kA



 

Shape Accuracy

LCFS Error 

X-point accuracy



 

Hardware Shape Accuracy

LCFS Error 

X-point accuracy



 

Summary

• Large Opportunities available in speeding up design
• If can avoid the exploration problem – Do!
• Can jumpstart training from pre-existing data

• Need to be careful with treating results in simulation as truth
• Can significantly increase accuracy in sim
• Need to push again on improving sim2real transfer



 

Contrasting Classic Control and RL

Traditional controllers (MIMO PID) Reinforcement Learning Implementation

Separate error for each control loop Single reward function

Error computed online No explicit error signals or estimation

Separate complex state estimators and
tuning of multiple control loops

Joint (and potentially generalising) solution to 
entire stabilization/control problem

Domain knowledge required for problem 
definition and separate controller design

Domain knowledge is in simulator. Just define 
reward functions

Tuning of several control parameters Reward function engineering

(Usually) Clear relation between parameters 
and aspects of control performance Black-box agent

Integral control nominally gives zero 
steady-state error on desired quantities

No certainty of zero steady-state errors in case 
of external disturbances



 

Outlook

• Generalist agents - No need to retrain for new references

• Expand simulator capabilities to broaden the horizon of 
possibilities

• Co-design: simultaneously optimize tokamak design (plasma 
shape, sensors, coil, vessel placement) together with controller



 

Conclusions

• Demonstrated RL for closed-loop magnetic control of tokamak 
plasmas, trained in simulation and tested on a real device
• Implementing 10kHz controller with 100+ measurements, 20 actions is a milestone 

for RL on real-world systems in terms of complexity
• Models are sufficiently accurate to perform the required simulations 

• Bright future for more applications of RL
• For accelerating fusion science: improving plasma performance & design new 

devices
• For application to more complex real-world systems, in particular where good 

models exist



 

Successful multidisciplinary collaboration!

Tight integration between teams to understand and control this 
challenging system


