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Fusion research: At the forefront of supercomputing since the ‘70s
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Performance development of supercomputers since the ‘90s

www.top500.org
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From highly idealized models to virtual fusion systems
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Increasing fidelity & modeling capability with increasing computing power

more complete
physics

faster

Multi-fidelity approach:
• HiFi models for reliable extrapolation/prediction
• LoFi models (based on HiFi models) for high-

throughput computing & real-time applications 
(incl. control)

  Both are needed – together
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The GENE family of grid-based gyrokinetic turbulence codes

T flux tube (2000)
S flux tube (2002)

T global (2011)

S full surface
(2014)

S global (2020)
T = tokamak

S = stellarator

GENE

GENE-3D

GENE-X
T/S global 

(2021)

GENE User Sites

Germaschewski+ PoP 2021

Weak scaling (8 … 512 nodes) on Summit: GPU vs CPU
Per node: 2 x IBM Power9 and 6 x NVIDIA Volta V100

Entering the exascale era (ECP & Plasma-PEPSC projects)



Key idea:

Reducing accuracy
in exchange for 
more efficiency



AI Meets Large-Scale Computing

“Science at extreme scales: Where big data meets large-scale computing”
Interdisciplinary Long Program @UCLA
September 12 - December 14, 2018
200+ participants, 50+ long-term participants

Speaker list includes:
• Yann LeCun (Director of AI Research

@Facebook)
• Emmanuel Candes (Stanford University)
• Rajat Monga (Google)
• Matthias Troyer (Microsoft)
• James Sexton (IBM)
• Adrian Tate (Cray)
• Alan Lee (AMD)
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Tech Oscar 2013 for     
Nils Thuerey
The quartet was honoured for developing a 
technique that makes it easier for visual 
effects artists to control the appearance of 
gas and smoke on film
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AI Acceleration of 
Fluid Dynamics 
Simulations
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Large Eddy Simulations
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2D Hasegawa-Wakatani Model



Two-Fluid Model for Plasma Turbulence

𝜕!𝑛 = 𝑐" 𝑛 − 𝜙 − 𝜙, 𝑛 − 𝜅# 𝜕$𝜙 − 𝜈∇%&𝑛
𝜕!Ω = 𝑐" 𝑛 − 𝜙 − 𝜙,Ω 	 − 𝜈∇%&𝜙

𝑤𝑖𝑡ℎ	 Ω = ∇'%𝜙

𝑛:		Density	(t,	y,	x)
Ω:		Vorticity	(t,	y,	x)
𝜙:		Potential	(t,	y,	x)



Two-Fluid Model for Plasma Turbulence

𝜕!𝑛 = 𝑐" 𝑛 − 𝜙 − 𝜙, 𝑛 − 𝜅# 𝜕$𝜙 − 𝜈∇%&𝑛
𝜕!Ω = 𝑐" 𝑛 − 𝜙 − 𝜙,Ω 	 − 𝜈∇%&𝜙

𝑤𝑖𝑡ℎ ∇'(%Ω = 𝜙

𝜕! Runge	Kutta 4th order,	Euler,	leapfrog	methods
⋅,⋅ Arakawa	Scheme
𝜕$ Central	Finite	Difference
∇%& Repeated	Central	Finite	Difference
∇(%	 Fourier	Poisson	Solver



Two-Fluid Model for Plasma Turbulence

𝜕!𝑛 = 𝑐" 𝑛 − 𝜙 − 𝜙, 𝑛 − 𝜅# 𝜕$𝜙 − 𝜈∇%&𝑛
𝜕!Ω = 𝑐" 𝑛 − 𝜙 − 𝜙,Ω 	 − 𝜈∇%&𝜙

𝑤𝑖𝑡ℎ	 𝜙 = ∇'(%Ω

𝑛! "𝑛!"#

𝜕𝑛!

𝜙!
Finite

Differences
Poisson
Solver

Ω$ &Ω!"#

𝜕Ω$



Dynamics of the 2D Hasegawa-Wakatani Model



Typical Resolution Requirements

𝜕!𝑛 = 𝑐" 𝑛 − 𝜙 − 𝜙, 𝑛 − 𝜅# 𝜕$𝜙 − 𝜈∇%&𝑛
𝜕!Ω = 𝑐" 𝑛 − 𝜙 − 𝜙,Ω 	 − 𝜈∇%&𝜙

𝑤𝑖𝑡ℎ ∇'(%Ω = 𝜙

Spatial	Resolution:			512	x	512
Time	Step	Size:			0.025
Time	Steps	Required:			1,000+



Properties to Preserve

𝜕!𝑛 = 𝑐" 𝑛 − 𝜙 − 𝜙, 𝑛 − 𝜅# 𝜕$𝜙 − 𝜈∇%&𝑛
𝜕!Ω = 𝑐" 𝑛 − 𝜙 − 𝜙,Ω 	 − 𝜈∇%&𝜙

𝑤𝑖𝑡ℎ ∇'(%Ω = 𝜙

Γ# 𝑡 = −∬𝑑%𝑥 𝑛 𝜕$𝜙 = −∫ 𝑑)!	 𝑖 𝑘$ 𝑛 𝑘$ 	𝜙 𝑘$
∗ source

Γ+ 𝑡 = 𝑐"∬𝑑%𝑥 𝑛 − 𝜙 %	
𝜕!𝐸 = Γ# 	− 	Γ+ 	− ∬𝑑%𝑥	(𝑛	∇%&𝑛	 − 	𝜙∇%&𝜙)																					sinks
𝜕!𝑈 = Γ# +∬𝑑%𝑥 𝑛 − Ω ∇%&𝑛 −	∇%&𝜙



What is the correct baseline simulation?
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Large-Scale Quantities of Interest
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Γ!: Downsampling in Fourier Space

A posteriori reduction of 256x is possible w/o significant loss of accuracy
A priori reduction results in significant errors



AI-Accelerated Simulations
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Predictor Step at Reduced Resolution

𝜕!𝑛 = 𝑐" 𝑛 − 𝜙 − 𝜙, 𝑛 − 𝜅# 𝜕$𝜙 − 𝜈∇%&𝑛
𝜕!Ω = 𝑐" 𝑛 − 𝜙 − 𝜙,Ω 	 − 𝜈∇%&𝜙

𝑤𝑖𝑡ℎ ∇'(%Ω = 𝜙
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ML-Based Corrector Step
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Putting Things Together
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Results
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Spatial Dynamics, Stable for 𝟏𝟎𝟔 Time Steps



Time Traces: Long-Time Stability (!)



Averages



Ja, ja – but is it really physical?!
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Preserving Spectral Properties
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𝛿! angle between density and phi



Preserving Spectral Properties
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𝛿! angle between density and phi

Γ" 𝑘! source term spectrum



Preserving Statistical Properties
Γ" cumulative distribution function Γ# cumulative distribution function



What do we gain?
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• Preserved visual dynamics*

*within 𝟏𝝈 of mean
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• Preserved physical metrics*
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What do we gain?
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• Preserved visual dynamics*
• Preserved physical metrics*
• Preserved spectral properties*
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What do we gain?
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• Preserved visual dynamics*
• Preserved physical metrics*
• Preserved spectral properties*
• Preserved statistical distributions*
• Speedup:

• Network scales O(n)
• Downsampling in 𝑥 and 𝑦, 16x each:  256x
• Using fewer gradients, RK4 → 𝐸𝑢𝑙𝑒𝑟:  4x
• Increasing time step compared to RK4:  5x
• Up to ~5,000x faster in theory
• Speedup of ~600x in practice (70s, down from ~12h)

*within 𝟏𝝈 of mean
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• Preserved visual dynamics*
• Preserved physical metrics*
• Preserved spectral properties*
• Preserved statistical distributions*
• Speedup:

• Network scales O(n)
• Downsampling in 𝑥 and 𝑦, 16x each:  256x
• Using fewer gradients, RK4 → 𝐸𝑢𝑙𝑒𝑟:  4x
• Increasing time step compared to RK4:  5x
• Up to ~5,000x faster in theory
• Speedup of ~600x in practice (70s, down from ~12h)

*within 𝟏𝝈 of mean

Up to 5,000x faster
Statistically indistinguishable


