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• ITER collaboration between US, EU, China, India, Russia, S. Korea (Largest research endeavor >CERN) 
• 500 MW of fusion power (10x input power) è Fusion as an energy source
• To be finished in 2020s (Independent Fusion Private Companies are also developing reactor option) 

An ITER Fellow

ITER

Next Step: ITER, Net Energy Production from Fusion
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Tokamak Disruption (C-Mod)

youtu.be/CUfR819hIDg
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Steer the Plasma Away from Unstable Equilibria with Real-time 
(RT) Stability Analysis and Control
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Example Wall Damage 
from JET
Matthews et al. 
Physica Scripta, 
T167, 2016
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a

Develop fast algorithms to 
analyze stability in real-time 
for disruption avoidance

Steer the Plasma Away from Unstable Equilibria with Real-time 
(RT) Stability Analysis and Control
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Data-Based Control for Fusion

Measurement 
Device

Desired 
output 

Controller
-

+ Actual 
output 

Plant/
Process

• Fusion plasmas/reactors has very complicated physics
• There is a lot of diagnostic measurement
• Prime target for data-based control design!
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Kolemen / APS-DPP / Nov 2021

Fusion Has Huge Amounts of Data:
How to Utilize This for Control?

• How can we bring this immense information into control? 
– Many not available or usable in real-time (RT)
– Too much data to pass to a central CPU
– Mostly not automated: Post-discharge analysis by physicists

• Machine Learning è RT data featurization + automated analysis + control design  
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Machine Learning for Real-time Fusion Plasma Behavior Prediction and Manipulation

I lead a big multi-institutional program on ML Control for fusion 
PU (lead), PPPL, SLAC, CMU, UWM 
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ML for Plasma State Prediction

Measurement 
Device

Desired 
output 

Controller
-

+ Actual 
output 

Plant/
Process

ML as eyes
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• Extend RT control to fast plasma dynamics and fluctuation diagnostics 
• Fluctuation diagnostics capture fast plasma dynamics with MHz sampling
• RT calculations on ~10-100 signals at ~1 MHz is not feasible on CPU/GPU → requires FPGA 

at sensors – “Edge ML”
• Calculation output captures information about fast plasma dynamics and output is available 

to downstream plasma control system
• Diagnostics: BES, interferometers, ECE 

EDGE-ML with FPGAs Allow Fast Real-time Analysis of Diagnostics on DIII-D 
(With SLAC Ryan Coffee)

CPU/GPU: instruction set, 
registers, buses, addresses

FPGA: bits flowing 
through gates

è 

FPGA systems on DIII-D Tokamak
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ITER

DEMO

DIII-D
● Nuclear environment è Minimal 

Diagnostics
● Nuclear environment è Faults/Failures 

expected

● How to be robust? 
● What is the minimal diagnostics set 

necessary?

● ML to the rescue!

Obtain robust and minimal diagnostics set for fusion reactors using ML
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Plasma State Prediction with ML

● First find the shape of the 
plasma

● Then, 6x1D profiles
● Due to symmetry and high 

transport along flux sections

Full state of plasma 
determined by 1D 
profiles:
● Pressure (P)
● Current (J) 
● Electron temperature 

and density (Te, ne)
● Ion temperature and 

density (Ti, ni) 
● Rotation (𝛺)

Plasma State: Shape + 1D profiles
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Plasma State Prediction with ML using Surrogate Models

19
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ML-based model should not only be real-time and reliable,
but also efficient to meet the computing limitation of the PCS! 
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• Surrogate of Nonlinear PDE (Grad-Shafranov Eqn) that solves Plasma Shape
• More accurate than rt-EFIT (<1ms)

J.T. Wai, M.D. Boyer, E. Kolemen, “Neural net modeling of 
equilibria in NSTX-U”, NF, 2022. 

RT Plasma Shape Prediction with ML Surrogate of Physics Model 
(EQNet): Faster, More Robust
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• Neural net responds better to dynamic changes 
and induced vessel currents than online method 

• Faster: Removes 5ms phase delay during 
oscillations – improves controller chance for 
recovery  

• Robust: Trained with all good and bad sensors. 
è Losing a sensor degrades prediction BUT 
does not fail

• ML can output Linear State Space System which 
can then be used in control 

[Wai NF 2022]

RT Plasma Shape Prediction with ML Surrogate of Physics Model 
(EQNet): Faster, More Robust
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1D Profiles + Shape: Offline tool Consistent Automatic Kinetic 
Equilibrium reconstruction (CAKE) provides kinetic EFITs without 
requiring human intervention

CAKE [Z. Xing et. al, FED ‘21]:
● Low error kinetically constrained 

reconstructions

● No human intervention

● Handles limited quality & quantity of 
data

● Runs whole shots post-shot 
(CAKE01,CAKE02)

● Takes order(minutes) per slice
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Real-time CAKE Surrogate model RTCAKENN allows

● RTCAKENN achieves CAKE-level outputs, while 
giving it access to only PCS-quality inputs in ms

[Shousha NF 23, In Review]
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RTCAKENN is robust against absence of TS data, still providing physical 
outputs 

RTCAKENN provides reasonable Te, ne and remaining profiles in absence of TS inputs

BAD TS INPUT DATA:                                                  GOOD RTCAKENN OUTPUT DATA: 
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RTCAKENN is robust against absence of CER data, still providing physical 
outputs 

RTCAKENN provides reasonable Ti, vtor and remaining profiles in absence of CER inputs

BAD CER INPUT DATA:                                                  GOOD RTCAKENN OUTPUT DATA: 
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Radiation (2D Bolometer) and Detachment (2D visible camera) Detection and assignment

Extended Plasma State: Detachment/Radiation (KSTAR+DIII-D)
With LLNL (Dr. Scotti) and KIAST (Dr. Oh) – C. Byun + N. Chen (Princeton) 

Raw and ML analyzed 
DIII-D TangTV (LNLL)

din

dout

[Detection] [Assignment] [Synthetic point]

Raw and ML analyzed 
KSTAR rt-bolometer (KAIST)
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Diag2Diag: Data-First Approach to Prediction of Fusion Dynamics and 
Reactor Scenario Design
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R0 (Reconstructed)

GPU#1

GPU#2

GPU#3

LSTM

100       200     300     400      500
Time (s)

V1

V2

V3

R0 (measured)

Diag2Diag: ML allows robustness to channel loss and find the minimum set 
of channels

Neural 
Network

• Reconstructing one CO2 interferometer cord from the others



E. Kolemen / Oct 2023

ECE#1

GPU#2

GPU#39

GPU#40

…

GPU#1

…

ECE#2

ECE#39

ECE#40

r0

v1

v2

v3

Reconstructed

• Reconstructing all CO2 interferometer cords from ECE diagnostics

Measured Inputs

Neural 
Network

Diag2Diag: ML allows robustness to diagnostics loss and find the minimum 
set of diagnostics
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The existing TS datapoints were used for 
train and validation of the Neural Network

up-sampling

TS

ECE

Time

xxxxxxx

Train data
validation data reconstructed data

Measured TS
(low resolution)

Up-sampled TS
(high resolution)

Up-sampled TS
(rolling average)

Comparing one channel of 
low resolution and high 
resolution TS temperature

High resolution profile

CO2 Interferometer  

ELM captured by
high resolution profile

Diag2Diag: ML allows combining cheap high frequency diagnostics with 
expensive low frequency ones

● Thomson Scattering gives 
Te, ne at high quality but 
expensive laser system only 
50 Hz

● Use cheap high res (1 MHz) 
ECE diagnostics to fill-in the 
blanks

● The development of a high 
temporal resolution 
equilibrium profile is 
currently on going.
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Plasma Evolution Prediction

31



E. Kolemen / Oct 2023

Dynamics model: predict evolution of plasma state given actuators

32

𝒙 = state (Shape + 1D profiles) 𝒖 = actuators

Find mapping 𝒇 s.t. 𝒙𝒕"𝟏 = 𝒇(𝒙𝒕, 𝒖𝒕, 𝒖𝒕"𝟏)
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ML as Plasma Evolution Model: Experimental Data-Based Profile Prediction

• ML-Based Prediction of Profile Evolution
• Input: DIII-D Historic Data (5 Profiles, Shape, NBI, Density,…)
• Output: Profile Evolution predicting NN

[Abbate, Conlin NF 2021]

NN
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Replaying a test set shot for BetaN, Li prediction (Ian Char, CMU, J. Abbate Princeton)

34

Ground 
Truth

Predictions
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Ground 
Truth

Predictions

Replaying a more interesting test shot (Ian Char, CMU, J. Abbate Princeton)
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Realtime Adaptive ML Plasma Model:
Reservoir Computing Network (RCN)
A recurrent neural network with random and sparsely connected early layers.
Only the last layer is trained using linear regression.

Specifications of RCN:
• Projects the inputs to a random very high-dimensional space.
• Ability to process temporal information (time-series data 

analysis)
• Much faster and easier training procedure compared to 

DNNs.
o LSTM: 5 hours on GPU
o RCN (with similar performance to LSTM): 4 Minutes on CPU
o Easy & fast training makes “in-situ” model adaptation 

possible

…

Input
layer

Reservoir

Readout
layer

Random
weights

Trained
weights
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Adaptive Data-driven Profile Prediction Model
* A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, 
E. Kolemen,
"Real-Time and Adaptive Reservoir Computing with an 
Application to Profile Prediction in Fusion Plasma",
IEEE Trans. on Neural Net. & Learning Systems, 2021.

CNN/LSTM RCN

Training 5h on GPU 45s on CPU 

Performance SOTA         Close to DNN 

Adaptation Difficult       Easy (100ms) 

Real-time Adapting
every 500ms
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Plasma Event Detection

38
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o AE modes reduces plasma performance, we would like to minimize them
o Input: Spectrogram of each ECE channel
o Process Stage 1: Enhancing spectrograms using Auto-Encoder network
o Process Stage 2: Detecting AE modes using Recurrent Neural Network
o Output: Score of AE modes per ECE per time step

Detecting Alfvén Eigenmode using ECE
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ECE spectrogram analysis

Edge � Core

Feature enhancement
(using Autoencoders)

AE Detection (using RNNs)

Real-time ECE data

Detecting Alfvén Eigenmode using ECE

40
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1University of Wisconsin-Madison, Madison, WI, US
2SLAC National Accelerator Lab, Menlo Park, CA, US
3Princeton University, Princeton, NJ, US

Real-time plasma confinement mode classification  

H-Mode• Motivation: Facilitate real-time control for access and 
sustainment of enhanced confinement regimes
– avoidance of transient events 

• e.g., RMP application soon after LH transition for ELM 
suppression

– sustainment of enhanced confinement regimes 
• e.g., quiescent H-mode, wide pedestal quiescent H-mode

1. Collection
raw BES signals 

from 48 ch.
6 x 8 x time 

window

2. Pre-processing
filtering and 

standardizing

3. Deep neural 
network

4. Confinement 
mode 

classification

Discharges Time (s)

L-mode 63 48.2

H-mode 62 156.1

QH-mode 28 43.4

WP QH-mode 32 40.8

*kevin.gill@wisc.edu

Kevin Gill1*, D. Smith1, S. Joung1, B. Geiger1, G. McKee1, J. Zimmerman1, R. Coffee2, A. Jalalvand3, E. Kolemen3

Workflow Dataset

mailto:*kevin.gill@wisc.edu
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ML Control for Fusion:
ML for control calculation

Measurement 
Device

Desired 
output 

Controller
-

+ Actual 
output 

Plant/
Process
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Edge energy burst is a major task in tokamak fusion, making the use of 
high confinement state difficult
ü High confinement is critical for economic fusion plasma.
ü Harmful edge energy burst (ELM) huddles the utilizing the high-confinement state.

- Due to the strong pressure gradient at the boundary.
à A 3D field is a promising approach in ITER to suppress it.

ELMy vs RMP-suppressed
[Large Scale Hybrid Simulation JOREK+PENTRC]
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ML-based adaptive ELM controller for
automated safe ELM suppression without empirical approach

ü Conventional 3D-field has empirically optimized waveform (Coil configuration).
→ Non-ITER applicable. 

ü ML-surrogate model to the Physics Model (GPEC-NET) for automatic coil configurations. 
[J.-K. Park NP 19, S.M. Yang NC 23]

ü Automated & adaptive ELM control in KSTAR without human decision. [S.K.Kim NC in review]

ü Keras2c GITHUB developed to make rt C code [Conlin EAAI 21]

Automated suppression

GPEC-NET
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Adaptive ELM control is key to achieve highest fusion performance 
without harmful edge energy burst

ü Fusion gain (G)
-Effectiveness of fusion power production

ü Confinement quality (H): 
- Efficiency of energy confinement.

ü Highest values achieved in two 
devices.

[S.K.Kim Nature Communication in review]
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ML Control for Fusion:
ML to design control directly

Measurement 
Device

Desired 
output 

Controller
-

+ Actual 
output 

Plant/
Process
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Reinforcement Learning has shown remarkable promise in game playing, robotics, and beyond.

DeepMind AlphaStar

While these works are impressive, they have access to relatively cheap accurate simulators.

What do we do if we do not have access to such a simulator? 
Data-based RL
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RL-based Tearing Mode Instability avoidance control

● Deep reinforcement learning:  “Finding the best action (control) policy”

● RL for instability avoidance control
○ Observation: Plasma state (Shape, 1D profiles) 
○ Action: Beam, ECH, Magnet Currents
○ Reward: [Fusion Gain (G), No Tearing Instability]

● Here Reward is calculated based on experimental data
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- Preemptive control of beam power and plasma shape can avoid the 
onset of tearing modes.

- By using AI, we can avoid tearing modes while pushing up 
performance.

(Concept of tearing avoidance)
(Implementation in DIII-D PCS, Nature, In Review)

Avoiding tearing mode instabilities with RL at DIII-D 
(with J. Seo)
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- We tested RL tearing avoidance control in an ITER baseline
- The AI-controlled shot preemptively controlled so avoided 

TM and achieved higher fusion gain.
- The controlled shot sustained a marginal tearability until the 

end of the flattop.

DIII-D experiment with RL controller (Nature, In Review)

Unstable (reference shot) Marginally stable 
(controlled shot)

Avoiding tearing mode instabilities with RL at DIII-D 
(with J. Seo)
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Scenario design: Ramp down the plasma with minimal left over current

V.Mehta et al. 2023
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Combining Data + Physics

59
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• Validate Te/Ti predictors using 
state-of-the-art settings

– Use multiple 
independent 
implementations 
(TRANSP + ASTRA)

– Run on ~hundreds of 
cases automatically 

– Compare to empirical 
(linear regression) model

Issue with Simulations: 1D simulation results comparable to linear fit

"𝑻𝒄𝒐𝒓𝒆 = 𝒎𝑻𝒆𝒅𝒈𝒆 + 𝒃

𝑻𝒆𝒅𝒈𝒆

"𝑻
𝒄𝒐𝒓𝒆 𝒆 '

𝝆'𝝆𝒄𝒐𝒓𝒆

𝝆𝒆𝒅𝒈𝒆'𝝆𝒄𝒐𝒓𝒆 𝒍𝒏 +𝑻𝒄𝒐𝒓𝒆𝑻𝒆𝒅𝒈𝒆

Sawteeth

Profile Consistency

[J. Abbate, PoP, In review 23]
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Current Work: Physics Simulation + Data: Better Prediction of Unseen Space

(From P. Rodriguez-Fernandez MIT thesis 2019)

𝒙
𝒖Explored points 

(historic experiments)

Reactor regime
(explore via sims)

Train neural net on 
ensemble of 
simulations

 
Example: 

Physics: ASTRA+ TGLF 
Transport Simulations
Data: AUGçèDIII-D

(From S. Wurzell PoP 2022)

DIII-D
Abbate in preparation
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Current Work: Physics Simulation + Data: Better Prediction of Unseen Space

Explored points 
(historic experiments)

(From S. Wurzell PoP 2022)

Low Ip High Iphttps://github.com/PlasmaControl/PlasmaEvolution

2. Example: 
Predict High Current 

shots from Low 
Current Ones

è 

Abbate in preparation

Train neural net on 
ensemble of 
simulations

 
Example: 

Physics: ASTRA+ TGLF 
Transport Simulations
Data: AUGçèDIII-D
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Conclusions

• Data-based control applied in real experiments successfully. 

– Plasma State Prediction (Shape, 1D profiles)
– Robust diagnostics to noise and signal loss 
– Plasma Evolution Prediction
– Instability Prediction
– Instability Avoidance Control

• Sim+data based plasma prediction show reasonable promise.


