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Why do we need surrogate modelling ?

Computational 
Complexity

SpeedNeighbourhood
Approximations

Uncertainty
Quantification

Latency

What does surrogate modelling offer ? 

Why are we using surrogate modelling now ? 

Models Big Data Hardware API

Unknown unknowns
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Models
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Traditional Neural Networks (MLPs, CNNs, RNNs …) map from the input vector 
space to the output vector space, learning the function that performs the 
required transformation. 

Neural Operators: Operator Learning 
using Neural Networks
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Neural Operators map the input function space to the output function 
space, learning the operator that performs the function transformation.  
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Neural Operators: Operator Learning 
using Neural Networks
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**Basis Functions**

But learning in the function space means learning the continuous operators ? 
How does one do that numerically ? 

Network is composed of Kernels that learn within the basis decomposition and point-wise 
operations allowing us to learn continuous representations on arbitrary discretised inputs 
and outputs. 

Change of Basis
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Neural Operators for PDEs
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Wavelet Decomposition à Wavelet Neural Operator[1]

Laplace Transform à Laplace Neural Operator [2]

Complex Transform à Complex Neural Operator [3]

Polynomial Basis à DeepONet [4]

Fourier Decomposition à Fourier Neural Operator [5]

Choose your Basis
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[1] Tripura et al. – Wavelet neural operator: a neural operator for parametric partial differential equations
 [2] Cao et al. – LNO: Laplace Neural Operator for Solving Differential Equations 
 [3] Tiwari et al. – CoNO: Complex Neural Operator for Continuous Dynamical Systems 
 [4] Lu et al. – DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators 
 [5] Li et al. – Fourier Neural Operator for Parametric Partial Differential Equations 
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Fourier Decomposition à Fourier Neural Operator [5]

Choose your Basis
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[5] Li et al. – Fourier Neural Operator for Parametric Partial Differential Equations 
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Fourier Neural Operator

Workshop on AI for Accelerating Fusion and Plasma Science10

General Neural Operator Framework:

Fourier Neural Operator Framework:
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Fourier Layer

Workshop on AI for Accelerating Fusion and Plasma Science11

Our Contribution:
  Multi-variable FNO : FNO modified with additional channel to 

 accommodate multiple variables associated with 
  a family of PDEs. 
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Now that we have a model, how do we 
train ? 

Workshop on AI for Accelerating Fusion and Plasma Science12

Tin = 3  Step = 1   Tout = 5
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Reduced-MHD
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Radial Convection of plasma blobs in toroidal geometry using JOREK 

Absence of a plasma current equilibrium generates a buoyancy effect, 
causing the blob to move outwards towards the edge. 

Density Electric Potential Temperature

2000 simulations built by varying the initial conditions of the plasma blobs:
  number, position, width and amplitude
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FNO over MHD
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Density

Electric Potential

Temperature

Tin = 10 
Step = 5 
Tout = 40

FNO: 6 orders of magnitude 
faster than JOREK
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FNO over MHD
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Motivation: 

Surrogate Modelling for quick, iterative scenario 
exploration, optimisation and design of experiments. 
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Error Growth 
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Super-Resolution
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Density Potential

Temperature

Being discretisation-invariant, 
FNO trained on coarser grids (100x100),
can be deployed for finer grids (500x500).
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FNO Over Camera 
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Modelling the plasma as diagnostically captured by the Fast Cameras on MAST

Camera viewing the 
central solenoid (rbb)[1]

Camera viewing the 
divertor (rba) [1]

Modelled over the entire shot duration of  55 shots 
    from the last campaign on MAST (M9) 

[1] Synthetic renders of the camera views created using 
the CAD model of MAST and Nvidia Omniverse. 
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FNO Over Camera 
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Motivation:

Real-time forecasting of fast camera images to track 

• plasma evolution, 
• predict L-H transition, 
• build further unto disruption prediction. 
• data assimilation (Sim2Real)
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Time Window Pipeline
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Time Window Pipeline
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Camera viewing the central solenoid 
(rbb) 
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FNO predicting across both L and H-
modes of Confinement. 
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Camera at the Divertor (rba)
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Paper
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Supplementary Slides
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Impact of Training Data
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Mode Ablation Study
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Individual FNO vs Multi-variable FNO 
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Impact of Step Size
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