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Approaches to magnetic confinement fusion 

Disruption prediction and avoidance 
towards real-time control

Axisymmetric
Induced toroidal current
Current driven instabilities

Not-axisymmetric
No need for inductive toroidal current
No major current driven instabilities
Overload on the first wall

Heat load monitoring for protection 
of overloads 
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Machine learning
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Supervised learning
• Input data
• Output data (Target)
• LABELED DATA

Unsupervised learning
• Input data

• UNLABELED DATA

Reinforcement learning
• No data
• Agent
• Enviroment
• Goal



Disruption prediction in tokamaks
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Instabilities in the tokamak plasma 

➢ rapid loss of the stored thermal and magnetic energy

➢ high power fluxes and mechanical forces on in-vessel components,

Severe damage to present-day fusion devices and more 

devastating effects in future devices.

Disruption prediction and avoidance Disruption mitigation

Disruption prediction: real time prediction of the thermal quench based on measured plasma parameters

• Theoretical models insufficient to reliably describe all disruption classes

• Empirical models based on machine learning are a common approach for predicting disruptions



The plasma parameters
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The disruption predictor
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Metrics

Barbara Cannas| IAEA Workshop on AI for Accelerating Fusion and Plasma Science | Vienna | 2023 11/28 – 12/1 | Page 6 

Ip

Flattop Phase

Time [s]

Stable phase Precursors phase

tDtpre-disr tvalvetalarm

Premature detections Successful prediction

Ta
rd

y 
d

et
ec

ti
o

n
M

is
se

d
A

la
rm

s

Disruption

• Missed alarms     MA 
(disruption terminated discharges)

• Tardy detections TD   
(disruption terminated discharges)

• False alarms        FA   

(regularly terminated discharges)

• Cumulative fraction of predicted 
disruptions before t*

(disruption terminated discharges)



Supervised and unsupervised approaches
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Task

to learn a function that maps the plasma state in input  to the desired output 

given the pairs 

plasma state / disruption risk

Supervised approach 

Need for human labelling to 
classify the current plasma state 

is either stable or unstable

Unsupervised approach 

No need for human labelling of 
different plasma states

plasma state / experiment termination



Unsupervised approaches: Self Organising Maps 
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SOMs transform  a set of 

N d-dimensional input data

x=[x1, x2, ..., xd]

into a 2D discrete map 

topologically ordered

Each input x is associated to a cluster of the map characterized by a weight vector w (barycenter of 
the inputs mapped in the node)

xr=[xr1, xr2, ..., xrd]

r = 1,…, N

Cluster i  - weight vector

wi=[wi1, wi2, ..., wid]

xr2

xr1

xrd



How does the SOM algorithm work?
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Competition

find the winning neuron, i.e., the  closest to each input vector

Cooperation

find the winning neuron’s neighbors

Adaptation

update the weights of winning neuron and its neighbors

wj(n+1) = wj(n) + ahij [d(x, wj(n)]

 

a learning rate 

d distance function 

h defines the winner neighborood 



The Self Organising Map (SOM)
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Temperature 

(peaking factor)

Electron density

(peaking factor)

Radiation

(two peaking factors)

Internal inductance

Locked mode 

xr2

xr1

xrd

Each 6D plasma state is 

associated to a cluster of the 

map characterized by a weight 

vector w (barycenter of the 

data mapped in the cluster).



JET SOM of the 6D plasma parameter space
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safe clusters samples 

from Regularly and 

Disruption terminated 

experiments

disruptive clusters

only samples from

disruption terminated

experiments

32×10 = 320 clusters

SOM
Tracking 
DT experiment

Tracking 
RT experiment



Adding knowledge on training and test set experiments 
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Regularly terminated 

experiments

Disruptive experiments 

Training
Experiments
until C30

Test
Experiments
until C38



Adding knowledge on experimental campaigns
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C28-30

C36

C38

Regularly 
terminated

experiments 

Disruption  
terminated

experiments 

Test
experimental campaigns



Get insight on data distribution: the Component Planes
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False 

alarms

Missed 

alarms

Tardy 

detections
Training 0%

(0/70)

0%

0/85

1.18%

1/85

Validation 0%

(0/70)

0%

0/85

1.18%

1/85

Test 2.01%

(3/149)

4.63%

5/108

0%

0/108

Novelty detection: any alarm if the sample is out of the range of 
the cluster training data

SOM performance 
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Heat-flux monitoring at W7-X

Barbara Cannas| IAEA Workshop on AI for Accelerating Fusion and Plasma Science | Vienna | 2023 11/28 – 12/1 | Page 16 



lower 
divertor 
targets

contour of 
confinement 

region

upper divertor
targets

Strike-line image

control coils were varied in different ways 

• DC ramps

• AC signals 

in fixed experimental conditions

control coils
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Strike-lines



From Control Coil Currents to Heat-Flux …

Objective: 

Predict   a set of features of the the heat-

flux distribution on the divertor (strike-line) 

from the actuators (control coil currents) 

and plasma parameters.

Two tasks:

1. Compress the heat-flux image into a 

set of IR features, so that IR features 

can be decoded back to heat-flux 

image → Deep Autoencoder

2. Predict IR features from actuators 

and plasma parameters

Control purposes

LOWER DIVERTOR

CONTROL COIL

UPPER DIVERTOR

CONTROL COIL

HEAT FLUX IMAGE

HEAT-FLUX IMAGE

DECONVOLUTIONAL 
NEURAL NETWORK

(DNN)

CONVOLUTIONAL NEURAL 
NETWORK

(CNN)

DEEP

AUTOENCODER

PLASMA

PARAMETERS
ML MODEL
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IR FEATURES



Deep Autoencoder
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➢ Efficient and nonlinear low-
dimensional coding of data

➢ Do not require labeled input data

➢ Self-supervised: generate their own 
labels



ResNet Autoencoder
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C. S. Wickramasinghe et al.: RAEs for Unsupervised 
Feature Learning From High-Dimensional Data

Residual 

connection



Deep Autoencoder for heat-flux reconstruction

HEAT-FLUX IMAGE

HEAT FLUX IMAGE
IR

FEATURES

ENCODER: CONVOLUTIONAL

NEURAL NETWORK (CNN)
DECODER: DECONVOLUTIONAL

NEURAL NETWORK (DNN)

RECONSTRUCTED HEAT-FLUX IMAGE

Two actors:

Encoder: compresses the information coming from the heat-flux image into a set of features

Decoder: encodes back the set of features into a reconstructed heat-flux image
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Spatio-temporal filter

- kernel 5x21x21 

(Height x Width x Time)

- σH = 1, σW = σT = 5

Thresholding

hf = 0 if hf < 0.15MW/m2

exception: hf = 1 if hole

FILTER

Deep Autoencoder Preprocessing
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Performance indices

RMSE Root Mean Squared Error

𝑺𝑺𝑰𝑴 =
𝟐𝝁𝒙𝝁𝒚+𝑪𝟏 𝟐𝝈𝒙𝒚+𝑪𝟐

𝝁𝒙
𝟐+𝝁𝒚

𝟐+𝑪𝟏 𝝈𝒙
𝟐+𝝈𝒚

𝟐+𝑪𝟐
Structural similarity index measure (SSIM) 

measures the perceived similarity of two images

𝜇 average brightness of the image (luminosity)

𝜎 standard deviation (contrast)

𝜎xy covariance                                 (the images deviate in the same direction)
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Deep Autoencoder performance

• Training and validation set: experiment with DC ramps control coil currents 

• Test set: experiment with AC control coil currents 

Training Validation Test

Levels Compressed Size Compression RMSE SSIM RMSE SSIM RMSE SSIM

0 1296x324x1 100.00% 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

1 648x162x8 200.00% 0.0123 0.9921 0.0126 0.9921 0.0153 0.9875

2 324x81x6 37.50% 0.0150 0.9800 0.0159 0.9800 0.0175 0.9742

3 162x41x6 9.49% 0.0163 0.9563 0.0180 0.9549 0.0174 0.9535

4 81x21x4 1.62% 0.0199 0.9118 0.0212 0.9087 0.0193 0.9201

5 41x11x8 0.86% 0.0313 0.7847 0.0313 0.7849 0.0275 0.8083

6 21x6x2 0.06% 0.0316 0.7852 0.0314 0.7872 0.0280 0.8066

7 11x3x6 0.05% 0.0395 0.6164 0.0394 0.6190 0.0334 0.6879
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Conclusions

• ML helps extracting scientific knowledge and bridge gaps between theoretical models 
and practical implementations

• Unsupervised techniques for machine protection (disruptions and heat-loads)

➢ Do not assume a priori knowledge  (SOM and ResNet)

➢ Data visualization (SOM)

➢ Model interpretation: the reasoning behind the predictions is understandable (SOM)

➢ Extrapolation to ITER
» acquire a general representation of experimental data that can be used in cross-machine 

applications
e.g., identify event chains that lead to disruptions 
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