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Quantum computing may be a game-changer
for fusion and science in general

= Polynomial to exponential gains in memory and computational power
* Exponential speedup for the Fourier transform, linear solvers, factoring integers, ...
* Quadratic speedup for unstructured search, optimization, sums & integrals, ...

= Great progress has been made on quantum hardware & technology

* Multiple platforms: ion traps, neutral atom traps, superconducting circuits, NMR, ...
* Google, IBM, & others now claim to have achieved quantum supremacy ...

= But, we are still in the Noisy Intermediate-Scale Quantum (NISQ) era
* Many qubits, but no error correction
* 1% error rate per gate = can only perform ~100 gate operations
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The key insight ...

Nature isn't classical, dammit, and if
you want to make a simulation of
nature, you'd better make it
quantum mechanical, and by golly

it's a wonderful problem, because it
doesn't look so easy.
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Outline: Quantum Computing for Fusion Energy Sciences

= Intro to Quantum Computing Quantum
— Qubits phase space
— Quantum Algorithms

= Quantum Simulation Algorithms
— Linear
— Nonlinear

= Testing Quantum Hardware Platforms
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= Conclusions & Outlook | = Neusits =16
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The qubit is the simplest complex Hilbert space

Classical Information Bit Qubit Quantum Information
10){0|
[
: S 11>
i
Physical parameter . |0>
0 1 | 1 ) ( 1 | Physical parameter

= Pure State: wavefunction i € C? is a normalized
superposition of the basis states |0) and |1)

cos O e '/2|0)
sin@ eti®/2|1)

(,000|0><0| P01|0)(1|)

= Mixed State: probability density matrix
po1|1)(0]  pq1|1)(1]

p = pT € H,~R*is a mixture of pure states

Poo/0)(0]

f = Diag(p) = ( ,011|1>(1|)

= PDF: probability distribution function f € R?

uL' LLNL- PRES-857541




Quantum memory registers are “exponentially large”

Qubit: Dimension 2 n Qubits = Hilbert Space Dimension: N = 2"

0)
A\

- -
1

- "T_‘\

= For n qubits, the number of states is N = 2"

— Pure State: ¢ € CY has 2(N — 1) real DOFs
— Mixed State: p = p7 € Hpxy has (N2 — 1) real DOFs

— Classical PDF: f € R" has (N — 1) real DOFs

= Direct quantum simulation is extremely difficult due to exponentially large Hilbert space!
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Let’s use “quantum

machines” to simulate quantum physics!

Qubit: Dimension 2
0)
/t\

- (i

- "T_—\

1
- i ay

/

1)

n Qubits = Hilbert Space Dimension: N = 2"

= A brief history of quantum algorithms:

— Early-1980’s: Turn the challenge into an opportunity — Feynman, Manin, Bennett & Brassard

— Mid-1990’s: Factoring integers, unstructured search, quantum counting — Shor, Grover, Brassard, Hoyer, Tapp
— Late-1990’s: Efficient simulation algorithms based on Trotter-Suzuki decompositions — Lloyd & Abrams

— Early 2000’s: Linear solver algorithms — Harrow Hassidim & Lloyd, Ambianis, Childs Kothari & Somma, ...

— 2015-present: Accelerated linear solver, linear diff eq & simulation algorithms — Berry, Childs, Low & Chuang
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Digital quantum computing model has power and simplicity

= Quantum states can be transformed efficiently via linear unitary operations

— 1 = Uy where U = et js g unitary UUT = I evolution operator and H = HT a Hermitian Hamiltonian
— This is amazing! because 1 is an exponentially large vector and U is a dense exponentially large matrix!

do -

P(nf2)

» 3 qubit FFT

-
0.

= While there are a huge number, N2 = 22", of unitary operations, they are generated by a

small number ~O(n) of basic operations called a “gate set”
— Single qubit operations can be achieved efficiently with a few standard gates, e.g. RX and RZ
— Adding one nontrivial 2-qubit gate, e.g. CNOT or CZ, between nearest neighbors generates the rest

uL' LLNL- PRES-857541
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Many useful computations can be performed in O(poly(n)) basic gate
operations!

= The key resource is quantum parallelism: superposition and interference ©
— Any reversible classical computation can also be performed, but typically without a speedup

do -

P (n/2)

. 3 qubit FFT

P (m/4) P (n/2)

-

= Approximating an arbitrary unitary is exponentially hard ®
— Only certain unitaries can be performed efficiently
— Initializing all quantum information is exponentially hard
— Measuring all quantum information is exponentially hard Key Limitations

= Measuring exponentially small probabilities is hard ®
— Central limit theorem implies direct sampling converges as 1/sqrt(# samples)
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A few essential subroutines power the majority of quantum
algorithms

= Quantum Fourier Transform: Cost of (log N)? rather than classical N log N
— Phase estimation, factoring integers, and taking discrete logarithms — Peter Shor 1994
— Powers many Hamiltonian simulation algorithms
— Hamiltonian simulation powers linear solvers, linear diff. eq. solvers, and variational eigensolvers, etc.

= Amplitude Amplification: Cost of sqrt(N) rather than classical N
— Amplitude amplification first used in Grover’s search algorithm — Lov Grover 1996
— Amplitude estimation & Quantum counting — Brassard, Hoyer, Mosca, Tapp 2000
— Powers many Monte Carlo and integration algorithms — Heinrich & Novaks 2000, Montanaro 2015

= Quantum Walks: Cost of N rather than classical N2
— Early models turned into a computational framework — Aharonov, Ambianis, Kempe, Vazirani 2001
— Graph search, element unigueness, ... —Ambianis, Childs, Kempe
— Hamiltonian simulation, state preparation — Szegedy 2004, Childs 2010
— Qubitization, Quantum Signal Processing, Quantum Singular Value Transformation — Low & Chuang 2017

uL' LLNL- PRES-857541
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Outline: Quantum Computing for Fusion Energy Sciences
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Hamiltonian simulation can speed up the solution of linear PDEs

= Simple PDEs, e.g. Poisson or wave equation, have simple/sparse

Hamiltonians and can typically be solved with exponential speedup

— The output is a wavefunction that encodes the solution _
— And a few robust physical observables <O,>, <O,>, <O3> ) = z P |x)
X

= However, outputting the data {1, } to a classical register, requires an

exponential amount of work & reduces speedup to quadratic at best [1,2]
— The same problem occurs for nontrivial initial condition and/or source functions

N
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o AR
i
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= “Hidden Spectral Problem”: if you promise there is a basis in which the

solution is exponentially sparse, then we can get exponential speedup
— Like doing “X-ray crystallography”

Ll— P. Costa, S. Jordan, A. Ostrander
L LLNL- PRES-857541 [1] Costa et al PRA 2019, [2] Montanaro & Pallister PRA 2016 Phys. Rev. A 99, 012323 (2019)
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Amplitude Estimation yields up to quadratic speedup for output

= Central limit theorem: direct sampling requires computational cost ~ 1/accuracy?
— Classical randomized Monte Carlo algorithms can also often provide an

exponential speedup over Eulerian methods

= Amplitude estimation only requires computational cost ~ 1/accuracy

k,a
Holder class Fd

function space deterministic | randomized quantum
LéV,QSpgoo 1 n—1/2 n—1
o~ (kta)/d o= (kta)/d=1/2 | —(k+a)/d—1 Convergence [1] of
error with number
n—k/d n—k/d=1/2 n—k/d=1 of function calls n

k
Sobolevclass W 4o 2 < p < 00

= Relative to deterministic algorithms, speedups increase for

high dimensions d — oo and for solutions that are not smooth k,a« — 0
— Key Assumption: location of discontinuities are unknown = stochastic / randomized functions

uL' LLNL- PRES-857541
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The No-Cloning Theorem fundamentally limits the ability of a
quantum computer to efficiently compute nonlinear functions

= No-Cloning Theorem:

An unknown quantum state cannot be copied |¢> |¢>
— The only way to do this is to measure all components and U
prepare an identical state from scratch ‘O> —_— —— ‘¢>

= If a state preparation process is reproducible, O) — U — zp>

we can form multiple replicas of the state 0 U ¢>
— A fault-tolerant quantum computer can run the same

guantum program to create identical outputs O> — U ¢>

= |terative algorithms that require nonlinear operations are exponentially costly [1]
— If each iteration needs 2 replicas, then the next iteration needs 4 replicas, and T iterations needs 2T replicas

uL. LLNL- PRES-857541 [1] S. K. Leyton, T. J. Osborne, arXiv:0812.4423 (2008) 15
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How about embedding a nonlinear differential equation
within a larger linear system?

= Quantization is a natural embedding for Hamiltonian systems
— Dissipation can be included by embedding the system within a much larger ideal system [1]

= Exact Koopman-von Neumann (KvN) [2] and Carleman [3] approaches
— The conservation of the probability distribution function (PDF) is a perfect embedding of a nonlinear system

... in an infinite-dimensional system of equations
— Carleman embedding [4] is a complex analytic form of Koopman [2] that works well near fixed points

= Special classes of PDEs may have more efficient types of embedding
— PDEs that are reducible to ODEs can be embedded using the KvN approach for ODEs [4]:

Hamilton-Jacobi equation, advection equation

= Integrable systems also have special types of embedding

uL' LLNL- PRES-857541  [1] J. Yepez 2002, S. Lloyd 2020 [2] I. Joseph 2020, 2023 [3] Jin-Peng Liu 2021 [4] S. Jin & N. Liu 2022 16




Approach # 1: Quantize the dynamics

ihdp = Hy

= Point Example: Quantum Sawtooth Map*

— Model for chaotic wave-particle interactions
— Converges to classical result as # of qubits increases

= Advantages
— Quantum version may be the more accurate physical model
— Many quantum algorithms for quantum simulation

— Quantum algorithms can efficiently calculate classical quantities:

Lyapunov exponent* & diffusion coefficient

= Disadvantages
— Quantum # Classical: interference, diffraction, & tunneling
— Semiclassical limit requires very large quantum numbers
— Non-Hamiltonian systems, e.g. with dissipation,
require embedding in a much larger ideal system

uL' LLNL- PRES-857541
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*@G. Benenti, et al., Quantum Info. Proc. 3, 273 (2004) 17



Approach # 2: Nonlinear dynamics acts linearly on function spaces

* Consider a set of nonlinear Diff Eq’s dz/dt = V(z,t) with initial conditions z, := z(t = 0)

Lagrangian

picture = 4V -Vz . chain rule . at Zy

= -V ‘VZO

Z

0¢Z

Zp

* The advection equation expresses the evolution of a scalar function: 6(z,t)

Koopman
evolution atg

— —_V .V0 Eulerian

picture

— 1V -V0 . chain rule : ate

Zy

Z

* The Liouville equation expresses conservation of probability: f (z, t)

Ocf

evolution

= +V- (V) - chain rule | atf‘z = V- (Vf) Perron-Frobenius

Zp
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Semiclassical wavefunction yields efficient unitary representation [1]

I”

= Since quantum algorithms act naturally on wavefunctions, consider the “semiclassical” ansatz

w(Z, t) — \/melﬂ(z,t)

= Where f(z,t) evolves as a PDF and the phase 6(z, t) evolves as a scalar field with a source

9, 6

= —V-V0 + L(z,t)/h

Z
= Inserting the definitions leads to the generalized Koopman-von Neumann equation [1-2]

ihd

= —ia(V -V + V- Vi)/2 — Ly

Z

= The classical Lagrangian L(z,t) = p - d, H — H(x, p) agrees with Feynman’s prescription for
the path integral and leads to the semiclassical Koopman-van Hove equation [2]

L [1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)
LL LLNL- PRES-857541 [2] I. Joseph, J. Phys A: Math. Theor. 56 484001 (2023)




Choice of numerical advection operator is important for accuracy

ODE KvN
dx
Tl —X* 0 = §0x(x21/1)+ %xzaxl/)

Upwind discretization

~~..
~ e
~~~
-,
~~~~~~-~
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Killer App? Use quantum machine learning to develop
reduced-order models for native quantum simulation / data

= Quantum

machine learning [1] and principle component analysis [2]

are potentially powerful techniques

— But, they have the I/O problem of getting the database of information in and out

= Quantum

Z. Bai, et al, AAIA J 2019

algorithms for reduced-order modeling of native quantum

simulation or experimental data [3] could be the killer app!
— Quantum data assimilation [4] and closure of dynamical systems [5]
gDMD: quantum Dynamic Mode Decomposition
gSINDy: quantum Sparse Identification of Nonlinear Dynamics

uL' LLNL- PRES-857541
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First plasma application: simulating three-wave interactions [1]

= Cubic couplings are ubiquitous in plasmas, fluids, & nonlinear media

— Examples: nonlinear optics, laser-plasma interactions, weak turbulence, -
gauge theory, lattice QED ...

W1 = Wy + w3 - A\
— Interaction Hamiltonian k1 — kz + k3 \
H, = igA AT AT — ig*al 4,4
[ = lgAa1d; Az — g Aq AxA3 ; ) -—

— Envelope equations for resonant interactions \=

thl = —g*AzAg thz — g*Al A-jlg- thB = g*Al A; 1

— Quantized version [Aj,AH = Ojk

Developed a new quantum algorithm for simulating 3-wave dynamics [1]
— Transform to action-angle variables -~ Pump

— Evolve a sparse tridiagonal Hamiltonian system P m T

uL' LLNL- PRES-857541
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Optimal control approach to 3-wave yields ~10x improvement on
LLNL QuDIT [1]

e LLNLQuDIT ME QuDIT —— Theory | RigettiAspen4 ° Results of LLNL QuDIT (blue) are close to
1.0 1 analytic solution (black) & match Lindblad
Master Equation (ME) simulation (purple)

* Results of Rigetti Aspen-4 platform (red)
100 perform well for first ~9 time-steps, but use
17x as many gates per step

* On both platforms, decay and dephasing
noise limit the fidelity after ~100 gate
100  repetitions

* Combining gates into single control pulse
improves long-term fidelity

N

l . : . » D
0 20 40 60 80 100 flgEttl

Time Step

QL- LLNL- PRES-857541 [1] Y. Shi, A. R. Castelli, X. Wu, et al, Phys. Rev. A 103, 062608 (2021) 24




Optimal control approach compresses many standard gates into one

=  Optimal control pulse c(t) generates the desired unitary
transformation U( 7") for a single time step of length T

u(T) = g"e—lf (Ho+c(DH)dt

= Although the dynamics is nontrivial, populations achieve the desired
levels by the end of the pulse

= Density matrix evolution is well-described by an experimentally

0:p = 5[H, p]

c(t)

0.015
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We now improved the performance of the Rigetti platform for a
chaotic 3-wave and 4-wave mixing problem using error mitigation

Fast-forwarding: Directly compiling U(NAt) rather than using UN (At) results in fewer gates

Randomized compilation': suppresses coherent errors, turning them into incoherent errors
— Compile U(At) to multiple equivalent circuits, select randomly for each time step

Rescaling?: probability P to extract signal S from incoherent noise using ansatz P = Se™ Y% + 1/2"
— Signal decay rate y calibrated with cycle benchmarking

1.0 4 113)

0.8- —— Exact
-4- U(NA)

0.6 1 & -+- UN(A)

-+ Rescaled UN

Probability

0.4 §

0.2 1

[1] PRA 94.052325
[2] PRR 4, 033140

0.0 4

L 0.0 2.5 50 0. .' 0 0 .' 00 .' .'
L LLNL- PRES-857541 T T T T 26




The quantum sawtooth map (QSM) is the most efficient chaotic
system to simulate on a quantum computer [1]

Classical Map: K=-0.1

* Classical sawtooth map depends on kicking strength K I

Hegy = %pz — %qu >, 6(t—n) for g mod 27

* Quantum sawtooth map also depends on 7

* Map eigenvalues of p to n qubits that represent N = 2" states
* his quantized in order to match periodicity in p
Ap:Zn’:hN h=27T/N

* Quantum propagator has four stages:

Ugsm = Fe=t ] Hsawdt/h — Uin(h) Uggr Upor (K /1) Ugpr

uL- LLNL- PRES-857541 [1] G. Benenti, et al, PRL 87 227901 (2001) 27




Noisy quantum computers can efficiently compute key signatures of
chaos: Lyapunov rate A = exponential separation of trajectories [1,2]

ChaoticK = 0.5

Simply measure the fidelity
f= | (l/)actual |L|Jtarget> | ’

Start
log(f)
Localized =
Forward algebraic decay ¢ ¢
t steps
Chaotic 2
exponential decay \ exp(—At)
Reverse -
L [1] G. Benenti, et al., Quantum Info. Proc. 3, 273 (2004)
LL LLNL- PRES-857541 [2] Ph. Jacquod, et al., Adv. Physics 58, 67 (2009)

Localized K = 0.1

Start

Forward
t steps

Reverse
t steps
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Semiclassical theory predicts that fidelity has two components that
decay at different rates*

f (t) ~ f Quantume_r“"iset +f Classical e Myt + 1/N

Quantum

—6 1Quantum

Fermi’s golden rule

01 23 456 7 8 9 10

uL' LLNL- PRES-857541
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*M. D. Porter, I. Joseph, Quantum 6, 799 (2022)

Weak Noise I'},ise

Classical simulation
e K=0.9
* n=12 qubits

Strong Noise I';yise
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Fidelity phase diagram determines whether the Lyapunov rate
can be observed*

Lyapunov
rate A
Noise decay
0 1 2 3 4 rateI'ngse
Key Limitations Key Requirements
 Dynamics must be chaotic * At least 6 qubits
* Lyapunov rate < noise decay rate * Noise must be reduced by 10-100x
* Overall decay rate cannot be too fast * Depends on architecture
* Noise cannot be too strong or too weak — Parallelization, layout, etc.

LL LLNL- PRES-857541

*M. D. Porter, I. Joseph, Quantum 6, 799 (2022)
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We performed the first gate-based quantum simulation proving that
fidelity depends on dynamics in addition to gate-count*

= Decay rate is faster for chaotic dynamics
with same # of gates
* Only single-qubit rotation angles change

= Saturates at low and high values of K

* Increases during the transition to chaos, but
does not keep increasing with Lyapunov rate

= Chaos generates delocalized entangled states
that are more sensitive to noise
* Actual error rates are 3 — 5x larger than reported

* Lindblad decoherence model infers
3x larger dephasing rate 1/ T,"

uL' LLNL- PRES-857541
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fidelity IBM manilla: 3 qubits
1.0 |
J.‘\
\u
0.6 \\
0.4 ; \\E\\ Localized
- K=0.1
&
0.2 1 Chaotic \\*
K=3.6 iy een el
..................................... f.‘.‘.—.-nrrrr-.-:.-:-:;:i
0 1 2 3 4 5
time steps
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Conclusions & Outlook

=" Quantum computing holds great promise for accelerating scientific discovery

* Efficient Fourier transforms, sparse linear solvers, sparse Hamiltonian simulation, variational eigensolvers, ...

* Chemistry, materials science, high-energy physics, nuclear physics, ..., fusion energy science!

= Quantum simulation of the PDF of nonlinear dynamical systems can achieve exponential
speedup over Eulerian methods and up to quadratic speedup over Monte Carlo methods
 Simulations of fluids, plasmas, molecular dynamics, finance, ecology, epidemiology, ...
* Quadratic speedup attained for high dimension and lack of smoothness
* Exponential speedup for end-to-end app’s likely requires problems with special structure

= Algorithms that utilize noise have potential for near-term quantum advantage
e Simulate open system dynamics with an open quantum system
 Passive and active error mitigation, e.g. quantum optimal control, are under extensive development
* Decoherence controls the “information confinement time”

uL' LLNL- PRES-857541 l. Joseph, Y. Shi, M. D. Porter, et al, Phys. Plasmas 30 010501 (2023)

33



Quantum Computing for Fusion Energy Science Applications
|. Joseph (LLNL), M. D. Porter (Sandia), Y. Shi (U Colorado Boulder), B. Evert (Rigetti), et al.

* Quantum computing holds great promise for accelerating scientific discovery

* Efficient Fourier transforms, sparse linear solvers, Hamiltonian simulation, variational eigensolvers, ... Quantum
* Chemistry, materials science, high-energy physics, nuclear physics, ..., fusion energy science! phase space

* Quantum simulation of the PDF of nonlinear dynamical systems can achieve
exponential speedup over Eulerian methods and up to quadratic speedup
over Monte Carlo methods

* Simulations of fluids, plasmas, molecular dynamics, finance, ecology, epidemiology, ...
* Quadratic speedup attained for high dimension and lack of smoothness
* Exponential speedup for end-to-end app’s requires problems with special structure

Classical
= Algorithms that utilize noise have potential for phase space
near-term quantum advantage ’

* Simulate open system dynamics with an open quantum system

* Passive and active error mitigation are under extensive development

* Decoherence controls the “information confinement time”

uL' LLNL- PRES-857541 l. Joseph, Y. Shi, M. D. Porter, et al, Phys. Plasmas 30 010501 (2023)
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Quantum information science (QIS) may soon lead to
. game-changing capabilities for science in general

Quantum-Enhanced Advanced LIGO Detectors
in the Era of Gravitational-Wave Astronomy

— Heisenberg limit for noise/signal ratio scales as M. Tse et al. Phys. Rev. Lett. 123, 231107 (2019)
1/N instead of 1/sqrt(N)

= Quantum Sensing: improves measurement sensitivity

China Demonstrates Quantum
Encryption By Hosting a Video Call

— Intrinsically parallel data transfer / data compression A. Nordrum, IEEE Spectrum (2017-10-03)

= Quantum Communications: secure information transfer

Quantum supremacy using a programmable
superconducting processor

F. Arute, et al. Nature. 127, 180502 (2019)

— Fourier transform, linear solvers, Hamiltonian simulation, ... Strong Quantum Computational Advantage Using a
Superconducting Quantum Processor

= Quantum Computing: polynomial or exponential
gains in effective memory and computational power

— Today = Noisy Intermediate-Scale Quantum (NISQ) era
Yulin Wu, et al. Phys. Rev. Lett. 127, 180501 (2021)

Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

uL' LLNL- PRES-857541 Han-Sen Zhong, et al. Phys. Rev. Lett. 127, 180502 (2021) 38




Semiclassical wavefunction yields efficient unitary
representation [1]

* Since quantum algorithms act naturally on wavefunctions, consider a “semiclassical” ansatz

l,b(Z, t) — \/melﬂ(z,t)

* Assume that the phase evolves as a scalar with a source

9,0 =-V-V0+L(zt)/h 010, = +V VO — L(z,t)/h
* For cIassicaIZdynamics, the classical Lagrangian L(z,t) = p - d, H — H(x, p) is the natural choice
because it agrees with Feynman’s prescription for the path integral & has special Hamiltonian structure [2]

* Inserting the definitions leads to the “Koopman-van Hove” equation [1-3]

ihd

= —ia(V - VY +V-VY)/2 — LY 1hos o= +ia(V -V + V- V) + Ly

Z

[1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)
uL. [2] C. Tronci, |. Joseph, J. Plasma Phys. 87, 835870402 (2021)
LLNL- PRES-857541 [3] I. Joseph, arXiv:2306.01865 (2023) 39



https://arxiv.org/abs/2306.01865

Quantum algorithms for differential equations come in many flavors

Linear vs. Nonlinear

— For sparse Hamiltonians, qguantum computers can exponentially speed up linear operations
— Koopman & Carleman: Nonlinear systems can be embedded within an infinite-dimensional linear system

Deterministic vs. Stochastic
— Amplitude estimation can quadratically speed up Monte Carlo sums and integrals = observable estimation
— Quantum walks can quadratically speed up the mixing time of Markov chains = time to solution

Variational Algorithms and Quantum Machine Learning
— Classical computer can efficiently perform nonlinear operations that drive a quantum computer
— Quantum machine learning can potentially avoid the use of classical computers altogether except for I/O

Discrete vs. Continuous Variable computation for classical PDEs & quantum field theory
— Uses a quantum field theory as the computational basis
— Classical limit is a classical field theory, i.e. a set of PDEs such as Maxwell’s equations

uL' LLNL- PRES-857541 40




Speedup requires exploiting special structure and/or sparsity

1.44

= Trotter-Suzuki & Lie group decompositions [1] work well for
specific Hamiltonians

n(A+B) ~ TIn ,B/2,A,B/2_ ,—B/2 (70 ,B,A\,B/2
e(A+B) ~ jzle/ee/—e/(]_[jzlee)e/

= Black box simulation methods work well for sparse Hamiltonians
— “Efficiently row-computable sparse” matrices 300 g
— Linear Combination of Unitaries (LCU) [2]; spectral methods [3]

0.12

0.1

0.05

100 g

= Quantum signal processing (QSP) & qubitization [4], eigenvalue &

singular value transformation [5] use block-encoded Hamiltonians

— Block encoding allows non-unitary operations to be performed! | g

I. Novikau, E. Startsev, I. Dodin
Phys. Rev. A 105, 062444 (2022)

LL LLNL-PRES-857541  [1] S |loyd 1996 [2] D. Berry 2017 [3] A. Childs 2021 [4] G. Low & I. Chuang 2017 [5] A. Gilyen 2019 41




Sparse linear evolution can be solved using black-box methods

= Choose a basis for finite-dimensional numerical discretization

— Possible choices of basis functions ¢,,(2)
« Spectral [1,2] e'*?, orthogonal polynomials H, (2), etc., ...
* Finite difference & finite element: local orthogonal polynomials H d . H
« Carleman linearization [3,4]: polynomials z* L E l/)n o nml/)m
m

* Reproducing Kernel Hilbert Spaces [2]: allow pointwise evaluation

V(0 = ) Pn(OPn()

= If the evolution is unitary, use the quantum Hamiltonian simulation algorithm (QHSA) [1,2]
Y(£) = Ugpproath(0) = T e ™1/ HAt/Ay ()

= Otherwise, use the quantum linear differential equation solver algorithm (QLDA) [3,4]
— Uses quantum linear solver algorithm (QLSA) to propagate forward for small timesteps At

l=a+p (1 + iaHAt/R)Y(t + At) = (1 — ifHAt/h)Y(t)
semi-implicit time

N [1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)
splitting

[2] D. Giannakis, A. Ourmazzi, P. Pfeffer, et al., arXiv:2012.06097 (2022)
uL_ [3] Jin-Peng Liu, H.@. Kolden, H.K. Krovi, et al., PNAS 118, e2026805118 (2021)
LLNL- PRES-857541 [4] A. Engel, G. Smith, S. P. Parker, Phys. Plasmas 28, 062305 (2021)
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Quantum walks yield up to quadratic speedup for solving
stochastic differential equations (SDEs)

= Quantum walks can speedup random walks [1] and Hamiltonian simulation [2]
— Quadratic speedup of the mixing time of Markov processes [1]

= Quantum algorithms for sums and integrals [3] are based on quantum walks & accelerate

the solution of SDEs [4] and Monte Carlo algorithms [5]
— Algorithm for turbulent mixing rate and turbulent reaction rate [6]
— Algorithm for diffusion, Navier-Stokes [7], and radiation-hydrodynamics

= Also leads to new methods for solving multi-level SDEs [8]
— Algorithms for finance, Monte-Carlo collision operators, ...

[1] M. Szegedy, FOCS 2004 [2] A. Childs, Comm. Math. Phys. 2010
uL. [3] S. Heinrich & E. Novaks, 2001 [4] B. Kacewicz, J. Complexity 2004 [5] A. Montanaro, PRSA 2015
LLNL- PRES-857541  [6] F. Gaitan, Nature Phys. 2021 [7] G. Xu, et al AIAA J. 2018 [7] D. An, et al, Quantum 2021 43




Approach #3: Hybrid classical-quantum variational algorithms

= Let a classical computer do the nonlinear work ...

— The classical computer iteratively solves a nonlinear

optimization problem using standard techniques
The parameters to be optimized are encoded within the quantum
program that will be run by the quantum computer

— At each step, the quantum computer evaluates a

computationally challenging cost function
e.g. based on a Hamiltonian with many degrees of freedom

uL' LLNL- PRES-857541 [1] M. Lubasch, et al, PRA 2015 [2] I. Joseph, et al, Phys. Plasmas 2023
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Approach #3: Hybrid classical-quantum variational algorithms

= Let a classical computer do the nonlinear work ...

— The classical computer iteratively solves a nonlinear

optimization problem using standard techniques
The parameters to be optimized are encoded within the quantum
program that will be run by the quantum computer

— At each step, the quantum computer evaluates a

computationally challenging cost function
e.g. based on a Hamiltonian with many degrees of freedom

= Complete data exchange generically only admits up to quadratic speedup

= Perhaps a high-order linear quantum model interacting with a low-order nonlinear classical
reduced model can obtain exponential improvement [2]?

uL' LLNL- PRES-857541 [1] M. Lubasch, et al, PRA 2015 [2] 1. Joseph, et al, Phys. Plasmas 2023 45




Variational algorithms have a few key steps ...

= For each time step, iterate until convergence [1]:
— Prepare initial ansatz
— Solve equations using Hamiltonian simulation
— Measure cost function and, potentially, gradients of the cost function
— Execute step of classical optimization algorithm
— Update ansatz

uL' LLNL- PRES-857541 [1] M. Lubasch, et al, PRA 2015 [2] L. Bittel & M. Kliesch, PRL 2021
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Variational algorithms have a few key steps ...
and a few key limitations

= For each time step, iterate until convergence [1]: NASA Earth ?bservatorw
Himalayas

Rre: g 35 T DEL W

— Prepare initial ansatz

— Solve equations using Hamiltonian simulation

— Measure cost function and, potentially, gradients of the cost function
— Execute step of classical optimization algorithm

— Update ansatz

= Optimization landscape may have intrinsic difficulties such as ...
— Many local maxima and minima
— Barren plateaus with little information on the gradient of the cost function

= NP-complete optimization problems may not have any quantum advantage at all [2]

uL' LLNL- PRES-857541 [1] M. Lubasch, et al, PRA 2015 [2] L. Bittel & M. Kliesch, PRL 2021 47




PDEs are naturally encoded in the Continuous Variable (CV)
model of quantum computing

= Digital quantum computers are actually made out of quantum fields
— Photons, electrons, ions, atoms, ...

= Quantum field theory (QFT) is the quantum counterpart of classical field theory (PDEs)
— In the large number limit, guantum fields approach a classical field

= The Continuous Variable (CV) model of guantum computation uses quantum fields directly
— The CV model has similarities with the analog model of classical computation
— Average position and phase are CV

= The CV model allows one to emulate PDEs and QFTs with basic QFTs: Dirac, Photon, ...

— Similar to a "Wind Tunnel” or “Optics Experiment”: works well for the task at hand, but not likely one can
control everything perfectly

uL. LLNL. PRES.857541 [1] Arazzola [2] Shi Jin & Nana Liu [3] Vahala 48




Amplitude estimation of physical observables'— is up to quadratically more
efficient than best classical methods

« Expectation value (O) = ) O(x)f(z) can be found by simulating a reversible classical
computation of

b(z) == OV (2)h(x) ¢ (z) = /1 — |6(2)]? =3 0@ /ol

« Add an ancillary qubit to |¢/) and compute a state proportional to |¢)

R [¥)10) - le z) [0) + ¢(x) [1)) /N*/? = cos (8) |¢') [0) + sin (0) o) |1)

- Amplitude estimation of the ancillary |1) state probability yields sin” (6) = (O) /N with
complexity ~ Qg /¢

D. S. Abrams and C. P. Williams, arXiv:quant-ph/9908083 (1999)
2S. Heinrich and H. Novak, Proc. 4th Int. Conf. on Monte Carlo and Quasi-Monte Carlo Methods, Hong Kong 2000, Springer-Verlag (2002)
uL— LLNL- PRES-857541 SA. Montanaro, Proc. R. Soc. London, Ser. A 471, 20150301 (2015) 49




Motivation: Can we simulate chaotic dynamics on e
n n Quasiprobability (Husimi
near-term universal quantum devices? —

= Interesting quantum simulations usually contain chaotic regions Nqubits=6
— Quantum chaotic simulations are important for many body localization, black
hole information scrambling, classical chaos, ...

= Efficient detection of quantum chaos can come from quantum-

classical correspondence

— Quantum systems recover classical limit at small A, but require many qubits

— Quantum fidelity decay of perturbed Hamiltonian evolution can reveal classically
chaotic or regular dynamics!-?

— For chaotic dynamics, quantum fidelity can decay at the rate of the Lyapunov nqub|ts_16
exponent A, which measures the exponential divergence of classical trajectories?

Nqubits =9

= Quantum maps allow efficient simulation of chaotic dynamics? | .
assical phase space »
— A guantum map decaying at the Lyapunov rate may be the most resource- ' v e
efficient signature of quantum chaos

1A, Peres, PRA 30.4 (1984) 1610
2Ph. Jacquod et al., Advances in Physics 58.2, 67-196 (2009)

uL. 3R. A. Jalabert, H. M. Pastawski, PRL 86.12, 2490 (2001)
LLNL- PRES-857541 4G. Benenti et al., PRL 87.22, 227901 (2001)




To date, we’ve used superconducting hardware
platforms & are starting to use ion traps

IBM-Q
= IBM-Quantum Experience Eagle
— Open but limited access to 5 qubit devices with relatively good fidelity 127 qubits
Rigetti

= Rigetti Quantum Cloud Services

— Rigetti-LLNL-USC Collaboration 20 qubit device §

.....

= LLNL Quantum Design and Integration Testbed (QuDIT)
— Open access to 3-level and 4-level qudits rather than 2-level qubits

- Sandia QSCOUT | o Quantum
ion trap \\ :;; // Design &
\ 1) / Integration
Sandia < 0y / Testbed
Peregrine (QuDIT)
uL' LLNL- PRES-857541 6 qubits ~ 6 qubits 51




Lack of error-correction limits fidelity of present-day calculations

= “Fidelity” is the figure of merit: F = |<¢expected|¢actual>|2
— Single qubit gate fidelity (IBM-Q): 99.9% --> 700 useful operations before 50%
— Two qubit gate fidelity (IBM-Q): 99.5% --> 140 useful operations before 50%
— State preparation & measurement (SPAM): 95% -->error at beginning and end

Fidelity vs. nonlocal gates in ibmq_quito
y=a-exp(=bx)+c

1.0 e e b=0.020
QFT circuit for 3 qubits Wos QFT fidelity vs
. - :' CX gate count
P (nf2) g 064 .
o -. P (m/4) P (n12) ! & . ‘ !
0.4 g @
g, — . i:
.o
021 etlite.
Se

0 10 20 30 40 50 60 70
number of nonlocal gates

= Infidelity for realistic calculations is ~¥2-5x worse than expected

— Fidelity does not always decay at an exponential rate
— Coherent gate errors are important and need to be corrected for
— Coherent errors can be much more damaging to intended calculations

uL' LLNL- PRES-857541
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Grover’s search algorithm can be modified to directly work on
LLNL’s 3-level QuDIT

1_0. ............................................................ . ................................................ . .........
Repeat n,, times 0ol 909259 0.9784 0.9996
"""""""""""""""""""""""" 0.8 ?
_ @ 0.7 P
! ! M
i i 0.6 °
| QFT i U i X Sos: L
| Uw s [ M
! ; 03(®
__| Fourier | | | search Grover | —~ 02/ ’
Transf. [ Oracle Diffusion| m 0.1 $
!'__““____""_____'"_____________________'I 00_ ................... ..... ..................................................
0 2 4 6 8 10 12
Nit

= Search on 3 items has a 92.6% success probability on the first iteration \\ 12) /
1)
NV

= Compare to 2-qubits: search on 4 items has 100% success on 15t iteration

uL' LLNL- PRES-857541




The performance of Grover’s search can be improved using

optimal control [1]

Repeat n; times

_____________________________________________

— X

_ X
QKT = U, [ Us [ &
Fourier Search Grover i /7§

| Transf. [ Oracle Diffusion| "

_____________________________________________

Expt. fidelity after 11 iterations

0.8 X
0.7 % g
S 0.6
X
0.5
0.4
Rigetti IBM-Q QuDIT

= Tests on IBM-Q, Rigetti, and LLNL QuDIT demonstrate reasonably good performance for

1-11 iterations

— Optimal control effectively improves hardware performance

[1] V. I. Geyko, et al., “Using Grover's search algorithm to test

uL' LLNL- PRES-857541 present state-of-the-art quantum computing platforms” (2023)
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The phase transition between diffusive and localized dynamics is
clearly observable on IBM-Q

‘ 2 qubit IBM experiment 0 3 qubit IBM experiment
1.0 1.

o k=01t=1  ; k & k=01t=1
’ < V2 ,

0gl ™ k=01t=2 AN loc 0gl ™ k=01¢t=2

e k=07t=1 /3 o k=07t=1

= k=07t=2 j RN m k=07t=2
0.6 7 Ay 0.6 Statistical error
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o A\
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What about Generalized Eigenvalue Problems (GEVP)?

= Generalized Eigenvalue Problem: Av = ABv

— Assume A is Hermitian and sparse
— Assume B is symmetric positive definite (SPD)

= Any SPD matrix, B, has a unique SPD square root B1/2

= The problem can be reduced to standard Hermitian form using the transformation

u = B2y H=B 1/2AB"1/2 mes) Hu=Au

= |n general, H will not be sparse and, hence, QPE will not be efficient, unless ...

= For special B, e.g. diagonal or block diagonal, then both B™1/2 and H are also sparse

uL. LLNL- PRES-857541 J. B. Parker and I. Joseph arXiv:2002.08497 (2020)
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FES Application: MHD plasma stability is a GEVP

= Linear Ideal MHD is routinely used for plasma stability calculations of magnetic confinement fusion
experiments and reactor designs 2
F-&=—-wp&

= Fundamental Theorem of MHD: Force operator, F(X), is a self-adjoint 2nd order differential operator [I. B.
Bernstein et al. (1958)]

= Numerical approximations such as finite differences, finite volume, and finite elements in the position, x, basis
typically lead to a sparse banded matrix for F and block-diagonal p

Hermitian form: u= pl/ZE H = I[)_l/sz_l/2 ‘ H-u=—-w’u

Quantum phase estimation can be applied to ideal MHD stability
Is this a route to fast stability calculations for design optimization or feedback control?

uL' LLNL- PRES-857541 J. B. Parker and I. Joseph arXiv:2002.08497 (2020) >7
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