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Quantum computing may be a game-changer 
for fusion and science in general

§Polynomial to exponential gains in memory and computational power
• Exponential speedup for the Fourier transform, linear solvers, factoring integers, …
• Quadratic speedup for unstructured search, optimization, sums & integrals, …

§Great progress has been made on quantum hardware & technology
• Multiple platforms: ion traps, neutral atom traps, superconducting circuits, NMR, …
• Google, IBM, & others now claim to have achieved quantum supremacy …

§But, we are still in the Noisy Intermediate-Scale Quantum (NISQ) era 
• Many qubits, but no error correction
• 1% error rate per gate à can only perform ~100 gate operations
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The key insight …
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Outline: Quantum Computing for Fusion Energy Sciences
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—Qubits
—Quantum Algorithms

§ Quantum Simulation Algorithms
—Linear
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§ Testing Quantum Hardware Platforms
—Error Mitigation
—Error Utilization

§ Conclusions & Outlook
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The qubit is the simplest complex Hilbert space
Quantum Information
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§ Pure State: wavefunction 𝜓 ∈ ℂ% is a normalized 
superposition of the basis states ⟩|0  and ⟩|1

§ Mixed State: probability density matrix 
ρ = ρ* ∈ ℍ+~ℝ+ is a mixture of pure states

§ PDF: probability distribution function 𝑓 ∈ ℝ% 𝒇 = Diag 𝛒 =
⟩𝜌''|𝟎 ⟨ |𝟎 	

⟩𝜌((|𝟏 ⟨ |𝟏



LLNL- PRES-857541 6

Quantum memory registers are “exponentially large”

§ For n qubits, the number of states is N = 2n 

— Pure State: 𝜓 ∈ ℂ! has 2(𝑁 − 1)	real DOFs

— Mixed State: ρ = ρ" ∈ ℍ!×! has (𝑁2 − 1) real DOFs

— Classical PDF: 𝑓 ∈ ℝ! has (𝑁 − 1) real DOFs

§ Direct quantum simulation is extremely difficult due to exponentially large Hilbert space!

Qubit: Dimension 2 n Qubits à Hilbert Space Dimension: N = 2n

⊗ ⊗ ⊗	…
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Let’s use “quantum machines” to simulate quantum physics!  

§ A brief history of quantum algorithms:

— Early-1980’s: Turn the challenge into an opportunity — Feynman, Manin, Bennett & Brassard
— Mid-1990’s: Factoring integers, unstructured search, quantum counting — Shor, Grover, Brassard, Hoyer, Tapp
— Late-1990’s: Efficient simulation algorithms based on Trotter-Suzuki decompositions — Lloyd & Abrams
— Early 2000’s: Linear solver algorithms – Harrow Hassidim & Lloyd, Ambianis, Childs Kothari & Somma, …
— 2015-present: Accelerated linear solver, linear diff eq & simulation algorithms — Berry, Childs, Low & Chuang

Qubit: Dimension 2 n Qubits à Hilbert Space Dimension: N = 2n

⊗ ⊗ ⊗	…
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Digital quantum computing model has power and simplicity

§ Quantum states can be transformed efficiently via linear unitary operations 
— 𝜓 = 𝐔𝜓𝟎 where 𝐔 = 𝑒%&𝐇( is a unitary 𝐔𝐔" = I evolution operator and 𝐇 =	𝐇" a Hermitian Hamiltonian
— This is amazing! because 𝜓	is an exponentially large vector and 𝐔 is a dense exponentially large matrix!

§ While there are a huge number, N2 = 22n, of unitary operations, they are generated by a 
small number ∼O(n) of basic operations called a “gate set” 
— Single qubit operations can be achieved efficiently with a few standard gates, e.g. RX and RZ
— Adding one nontrivial 2-qubit gate, e.g. CNOT or CZ, between nearest neighbors generates the rest

3 qubit FFT

Algorithm Testing on IBMQ Devices

Gabriel Woolls

June 8, 2021

1 Quantum Fourier Transform (QFT)

The QFT algorithm maps states in the “computational” basis |xi = |qn�1...q0i to Fourier states |x̃i
of the form

|x̃i = 1p
2n

⇣
|0i+ e

2⇡ix/2|1i
⌘
⌦

⇣
|0i+ e

2⇡ix/22 |1i
⌘
⌦ · · ·⌦

⇣
|0i+ e

2⇡ix/2n |1i
⌘

This is to say that whereas “computational basis” states |xi = |qn�1 . . . q0i encode information in
the z�spin of each qubit (i.e. the polarity of the Bloch vectors), Fourier basis states encode the
information in the phase of the Bloch vectors about the z�axis.

Figure 1: a. Example QFT circuit with 3 qubits. Here we prepare the state |6i = |110i = (X ⌦
X⌦ I)|000i and apply UQFT to obtain its Fourier dual |6̃i. b. Visual representation of the prepared
Fourier state.

One way to extract a “fidelity” from a noisy QFT implementation is to (1) prepare Fourier states
|x̃i = UQFT |xi “by hand,” using only single-qubit gates to encode the correct phase into each qubit,

and then (2) applying the inverse QFT circuit U †
QFT . In an ideal device, the output state would be

exactly |xi, i.e. the Fourier dual of the state we prepared “by hand”. We can thus obtain a fidelity
by comparing the outcome measurement distribution to the ideal |xi.

The hard-coding step, i.e. preparing a Fourier state |ñi with only single-qubit gates, is shown in
figure 2. After “inverting” this state with an inverse QFT, we should return to the corresponding
|ni state (see fig. 3 for a classical simulation of this).

1
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Many useful computations can be performed in O(poly(n)) basic gate 
operations! 

§ The key resource is quantum parallelism: superposition and interference J
— Any reversible classical computation can also be performed, but typically without a speedup

§ Approximating an arbitrary unitary is exponentially hard L
— Only certain unitaries can be performed efficiently
— Initializing all quantum information is exponentially hard
— Measuring all quantum information is exponentially hard

§ Measuring exponentially small probabilities is hard L
— Central limit theorem implies direct sampling converges as 1/sqrt(# samples)
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1

Key Limitations
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A few essential subroutines power the majority of quantum 
algorithms
§ Quantum Fourier Transform: Cost of (log N)2 rather than classical N log N 

— Phase estimation, factoring integers, and taking discrete logarithms – Peter Shor 1994
— Powers many Hamiltonian simulation algorithms 
— Hamiltonian simulation powers linear solvers, linear diff. eq. solvers, and variational eigensolvers, etc.

§ Amplitude Amplification: Cost of sqrt(N) rather than classical N
— Amplitude amplification first used in Grover’s search algorithm – Lov Grover 1996
— Amplitude estimation & Quantum counting – Brassard, Hoyer, Mosca, Tapp 2000
— Powers many Monte Carlo and integration algorithms – Heinrich & Novaks 2000, Montanaro 2015

§ Quantum Walks: Cost of N rather than classical N2

— Early models turned into a computational framework – Aharonov, Ambianis, Kempe, Vazirani 2001
— Graph search, element uniqueness, …  – Ambianis, Childs, Kempe
— Hamiltonian simulation, state preparation – Szegedy 2004, Childs 2010
— Qubitization, Quantum Signal Processing, Quantum Singular Value Transformation – Low & Chuang 2017 
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Outline: Quantum Computing for Fusion Energy Sciences
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§ Simple PDEs, e.g. Poisson or wave equation, have simple/sparse 
Hamiltonians and can typically be solved with exponential speedup
— The output is a wavefunction that encodes the solution
— And a few robust physical observables <O1>, <O2>, <O3>

§ However, outputting the data 𝜓. 	to a classical register, requires an 
exponential amount of work & reduces speedup to quadratic at best [1,2]
— The same problem occurs for nontrivial initial condition and/or source functions 

§ “Hidden Spectral Problem”: if you promise there is a basis in which the 
solution is exponentially sparse, then we can get exponential speedup
— Like doing “X-ray crystallography”

[1] Costa et al PRA 2019,  [2] Montanaro & Pallister PRA 2016 

⟩|𝜓 =6
)

𝜓) ⟩|𝑥

P. Costa, S. Jordan, A. Ostrander
Phys. Rev. A 99, 012323 (2019)

COSTA, JORDAN, AND OSTRANDER PHYSICAL REVIEW A 99, 012323 (2019)

FIG. 4. Spreading wave on line segment Dirichlet. In these fig-
ures we kept with the same parameters used for the previous plots,
changing only the initial condition for !φE . Now, we can see the wave
spreading equally for the both sides, reflecting in the boundary and
then meeting themselves again in the center, but with the amplitude
inverted. The units are the same used in the previous plots, meters
and seconds.

FIG. 5. Standing wave. Here, we consider a standing wave,
which can be described analytically by φ(x, t ) = cos(ωt ) sin(πx ).
This can be simulated by Schrödinger’s equation if we work with
!φ0 = sin(πx ) and d !φ0/dt = 0 as long as we start with t = 0. The
units are the same ones used in the previous figures.

FIG. 6. Wave packet in a cavity. Here, the initial state is a
Gaussian wave packet, but now in a two-dimensional region with
nontrivial boundary. Specifically, we simulate scattering of the wave
packet off a square object with Dirichlet boundary conditions. This is
implemented as a square hole in the underlying discrete lattice. These
four views represent the same wave packet in different time instants,
where ta > tb > tc > td . As in the one-dimensional example, we
worked with Dirichlet boundary conditions; however, the shape is
not preserved. Here, the box has size 10 in both axes, and we choose
a = 0.1563 and σ = 0.4.

012323-8

Hamiltonian simulation can speed up the solution of linear PDEs
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Hamiltonian simulation can speed up the solution of linear PDEs

[1] Costa et al PRA 2019,  [2] Montanaro & Pallister PRA 2016 
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§ Central limit theorem: direct sampling requires computational cost ~ 1/accuracy2

— Classical randomized Monte Carlo algorithms can also often provide an 
exponential speedup over Eulerian methods 

§ Amplitude estimation only requires computational cost ~ 1/accuracy

Amplitude Estimation yields up to quadratic speedup for output

12 S. Heinrich, E. Novak

(over deterministic algorithms), that is, the Monte Carlo gain is squared.
A similar pattern can be found in the case 1 < p < 2 for summation of
sequences. The speedup of Monte Carlo is here n−1+1/p (hence the advantage
over deterministic algorithms is reduced as p decreases). Nevertheless, in the
quantum setting this speedup is squared again. In the case 1 ≤ p < 2 for
integration in Sobolev spaces, the quantum gain is still better: Even in the
case p = 1, where Monte Carlo gives no advantage at all over deterministic
algorithms, the quantum speedup is n−1/2.

deterministic randomized quantum

LN
p , 2 ≤ p ≤ ∞ 1 n−1/2 n−1

LN
p , 1 < p < 2 1 n−1+1/p n−2+2/p !

F k,α
d n−(k+α)/d n−(k+α)/d−1/2 n−(k+α)/d−1

W k
p,d, 2 ≤ p ≤ ∞ n−k/d n−k/d−1/2 n−k/d−1

W k
p,d, 1 ≤ p < 2 n−k/d n−k/d−1+1/p n−k/d−3/2+1/p !!

The most interesting case for Monte Carlo and quantum integration is
that of moderate smoothness k and large dimension3 d which, in fact, occurs
in a number of important applied problems. In that case the deterministic
exponent, (k + α)/d or k/d, is negligible, so the n−1/2 Monte Carlo and
the n−1 quantum speedup essentially constitute the entire convergence rate.
Hence we observe a situation similar to that of Grover’s search algorithm: a
quadratic speedup for quantum computation as compared to classical ran-
domized algorithms. If we compare quantum algorithms with deterministic
classical algorithms, then the speed-up is even much larger – it is exponential
in the dimension d.
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! lower bound only for N ≥ n2

!! only upper bound
3 For the Sobolev spaces, as a consequence of the embedding condition (1.1), also
p has to be appropriately large.
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Sobolev class

Convergence [1] of 
error with number 
of function calls n

[1] Heinrich & Novak 2001 arXiv:quant-ph/0105114

§ Relative to deterministic algorithms, speedups increase for 
high dimensions 𝒅 → ∞ and for solutions that are not smooth 𝒌, 𝜶 → 𝟎
－ Key Assumption: location of discontinuities are unknown à stochastic / randomized functions

https://arxiv.org/abs/quant-ph/0105114
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The No-Cloning Theorem fundamentally limits the ability of a 
quantum computer to efficiently compute nonlinear functions

§ No-Cloning Theorem:
An unknown quantum state cannot be copied 
— The only way to do this is to measure all components and 

prepare an identical state from scratch

§ If a state preparation process is reproducible, 
we can form multiple replicas of the state
— A fault-tolerant quantum computer can run the same 

quantum program to create identical outputs

§ Iterative algorithms that require nonlinear operations are exponentially costly [1]
— If each iteration needs 2 replicas, then the next iteration needs 4 replicas, and T iterations needs 2T replicas

[1] S. K. Leyton, T. J. Osborne, arXiv:0812.4423 (2008)

U

U

U

√ 

https://arxiv.org/abs/0812.4423
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How about embedding a nonlinear differential equation 
within a larger linear system?
§ Quantization is a natural embedding for Hamiltonian systems

— Dissipation can be included by embedding the system within a much larger ideal system [1]

§ Exact Koopman-von Neumann (KvN) [2] and Carleman [3] approaches
— The conservation of the probability distribution function (PDF) is a perfect embedding of a nonlinear system 

… in an infinite-dimensional system of equations
— Carleman embedding [4] is a complex analytic form of Koopman [2] that works well near fixed points

§ Special classes of PDEs may have more efficient types of embedding
— PDEs that are reducible to ODEs can be embedded using the KvN approach for ODEs [4]:

Hamilton-Jacobi equation, advection equation

§ Integrable systems also have special types of embedding

[1] J. Yepez 2002, S. Lloyd 2020        [2] I. Joseph 2020, 2023         [3] Jin-Peng Liu 2021        [4] S. Jin & N. Liu 2022
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Approach # 1: Quantize the dynamics 𝑖ℏ𝜕!𝜓 = 𝐇𝜓

*G. Benenti, et al., Quantum Info. Proc. 3, 273 (2004)

nqubits=6

nqubits =9

nqubits =16

Classical 
phase space

Quantum 
phase space

§ Point Example: Quantum Sawtooth Map*
— Model for chaotic wave-particle interactions
— Converges to classical result as # of qubits increases

§ Advantages
— Quantum version may be the more accurate physical model
— Many quantum algorithms for quantum simulation
— Quantum algorithms can efficiently calculate classical quantities: 

Lyapunov exponent* & diffusion coefficient

§ Disadvantages
— Quantum ≠ Classical: interference, diffraction, & tunneling
— Semiclassical limit requires very large quantum numbers
— Non-Hamiltonian systems, e.g. with dissipation, 

require embedding in a much larger ideal system
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• Consider a set of nonlinear Diff Eq’s  𝑑𝑧/𝑑𝑡 = 𝑉(𝑧, 𝑡)  with initial conditions  𝑧' ≔ 𝑧 𝑡 = 0

• The advection equation expresses the evolution of a scalar function: 𝜃(𝑧, 𝑡)

• The Liouville equation expresses conservation of probability: 𝑓(𝑧, 𝑡)

Approach # 2: Nonlinear dynamics acts linearly on function spaces

O𝜕/𝑓 0!
= +∇ S 𝑉𝑓 O𝜕/𝑓 0

= −∇ S 𝑉𝑓 Perron-Frobenius
evolution

chain rule

O𝜕/𝑧 0!
= +𝑉 S ∇𝑧 𝜕/ O𝑧' 0

= −𝑉 S ∇𝑧'chain ruleLagrangian 
picture

O𝜕/𝜃 0
= −𝑉 S ∇𝜃O𝜕/𝜃 0!

= +𝑉 S ∇𝜃Koopman 
evolution

chain rule Eulerian 
picture
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§ Since quantum algorithms act naturally on wavefunctions, consider the “semiclassical” ansatz

§ Where 𝑓 𝑧, 𝑡  evolves as a PDF and the phase 𝜃 𝑧, 𝑡  evolves as a scalar field with a source

 

§ Inserting the definitions leads to the generalized Koopman-von Neumann equation [1-2]

§ The classical Lagrangian 𝐿 𝑧, 𝑡 = 𝑝 S 𝜕1 𝐻 − 𝐻(𝑥, 𝑝) agrees with Feynman’s prescription for 
the path integral and leads to the semiclassical Koopman-van Hove equation [2]

Semiclassical wavefunction yields efficient unitary representation [1]

O𝑖ℏ𝜕/𝜓 0
= −𝑖ℏ 𝑉 S ∇𝜓 + ∇ S 𝑉𝜓 /2 − 𝐿𝜓

𝜓 𝑧, 𝑡 = 𝑓 𝑧, 𝑡 𝑒"2(0,/)

𝜕/ O𝜃
0
= −𝑉 S ∇𝜃 + 𝐿(𝑧, 𝑡)/ℏ

[1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)   
[2] I. Joseph, J. Phys A: Math. Theor. 56 484001 (2023)
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Choice of numerical advection operator is important for accuracy

𝜓 𝑧, 𝑡 = 𝑓 𝑧, 𝑡 𝑒"2(0,/)

𝜕/ O𝜃
0
= −𝑉 S ∇𝜃 + 𝐿(𝑧, 𝑡)/ℏ

[1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)   
[2] I. Joseph, J. Phys A: Math. Theor. 56 484001 (2023)

4

FIG. 3: The upper plot show results from the simulation
with the CFD. One can clearly see the formation of the

Gauss-like oscillations. The contour plot of the bottom plot
shows results from the simulation of Eq. (5) for the

system (14) with the UWD as in Sec. I B. The red dashed
line is the direct simulation (without applying the KvN
approach) of Eq. (14). The black doted line is the time

evolution of the mean value (3).

𝑑𝑥
𝑑𝑡

= −𝑥2

Upwind discretization

𝜕/𝜓 = "
#𝜕. 𝑥2𝜓 + "

#𝑥2𝜕.𝜓

ODE KvN
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§ Quantum machine learning [1] and principle component analysis [2] 
are potentially powerful techniques
— But, they have the I/O problem of getting the database of information in and out

§ Quantum algorithms for reduced-order modeling of native quantum 
simulation or experimental data [3] could be the killer app!
— Quantum data assimilation [4] and closure of dynamical systems [5]
  qDMD: quantum Dynamic Mode Decomposition
    qSINDy: quantum Sparse Identification of Nonlinear Dynamics

Killer App? Use quantum machine learning to develop 
reduced-order models for native quantum simulation / data

[1] P. Rebentrost PRL 2014, M. Schuld PRA 2016, J. Biamonte, Nature Phys 2017  [2] S. Lloyd, Nature Phys., 2014 
[3] B. Kiani PRA 2022  [4] D. Giannakis PRE 2019, D. Freeman PNAS 2023  [5] D. Freeman arXiv:2208.03390

Z. Bai, et al, AAIA J 2019 

⟩|𝜓 =\
.

𝜓. ⟩|𝑥

https://arxiv.org/abs/2208.03390
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Outline: Quantum Computing for Fusion Energy Sciences
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§ Cubic couplings are ubiquitous in plasmas, fluids, & nonlinear media
－ Examples: nonlinear optics, laser-plasma interactions, weak turbulence,

gauge theory, lattice QED …

－ Interaction Hamiltonian

－ Envelope equations for resonant interactions

－ Quantized version

§ Developed a new quantum algorithm for simulating 3-wave dynamics [1]
－ Transform to action-angle variables 
－ Evolve a sparse tridiagonal Hamiltonian system

First plasma application: simulating three-wave interactions [1] 

[1] Y. Shi, A. R. Castelli, X. Wu, et al, Phys. Rev. A 103, 062608 (2021)

𝐻6 = 𝑖𝑔𝐴(𝐴%
* 𝐴7

* − 𝑖𝑔∗𝐴(
* 𝐴%𝐴7

𝐴8, 𝐴9
* = 𝛿89

𝑑/𝐴( = −𝑔∗𝐴%𝐴7 𝑑/𝐴% = 𝑔∗𝐴( 𝐴7
* 𝑑/𝐴7 = 𝑔∗𝐴( 𝐴%

*

𝜔( = 𝜔% +𝜔7
𝐤( = 𝐤% + 𝐤7
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Optimal control approach to 3-wave yields ~10x improvement on 
LLNL QuDIT [1]

• Results of LLNL QuDIT (blue) are close to 
analytic solution (black) & match Lindblad 
Master Equation (ME) simulation (purple) 

• Results of Rigetti Aspen-4 platform (red) 
perform well for first ~9 time-steps, but use 
17x as many gates per step

• On both platforms, decay and dephasing 
noise limit the fidelity after ~100 gate 
repetitions

• Combining gates into single control pulse 
improves long-term fidelity

[1] Y. Shi, A. R. Castelli, X. Wu, et al, Phys. Rev. A 103, 062608 (2021)
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Optimal control approach compresses many standard gates into one

§ Optimal control pulse c(t) generates the desired unitary 
transformation U(T	) for a single time step of length T

§ Although the dynamics is nontrivial, populations achieve the desired 
levels by the end of the pulse

§ Density matrix evolution is well-described by an experimentally 
calibrated decoherence model: the Lindblad Master Equation (ME)
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We now improved the performance of the Rigetti platform for a
chaotic 3-wave and 4-wave mixing problem using error mitigation

§ Fast-forwarding: Directly compiling 𝑈 𝑁Δ𝑡  rather than using 𝑈" Δt  results in fewer gates

§ Randomized compilation1 : suppresses coherent errors, turning them into incoherent errors
⎯ Compile 𝑈(Δt) to multiple equivalent circuits, select randomly for each time step

§ Rescaling2: probability 𝑃 to extract signal 𝑆 from incoherent noise using ansatz 𝑃 = 𝑆𝑒#$% + 1/2&
⎯ Signal decay rate 𝛾 calibrated with cycle benchmarking

[1] PRA 94.052325
[2] PRR 4, 033140
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log(Husimi Q): K = -0.1

The quantum sawtooth map (QSM) is the most efficient chaotic 
system to simulate on a quantum computer [1]

• Classical sawtooth map depends on kicking strength 𝑲

• Quantum sawtooth map also depends on ℏ

• Map eigenvalues of 𝑝 to 𝑛 qubits that represent 𝑁 = 2* states

• ℏ is quantized in order to match periodicity in 𝑝

• Quantum propagator has four stages:

𝐻+,- =
.
/
𝑝/ − .

/
𝐾𝑞/∑* 𝛿 𝑡 − 𝑛   for	𝑞	mod 2𝜋

Δ𝑝 = 2𝜋 = ℏ𝑁	 ℏ = 2𝜋/𝑁

𝑈012 = P𝒯𝑒%&	 ∫ 5!"#6(/ℏ =	 𝑈9&* ℏ 	𝑈0:;%. 	𝑈<=( 𝐾/ℏ 	𝑈0:;

𝐽

𝐽/ℏ

[1] G. Benenti, et al, PRL 87 227901 (2001)

𝜃

Classical Map: K=-0.1

-𝜋                       𝒒                        𝜋

Quantum Map: K=-0.1

𝒑

𝒑
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Start

Forward
𝑡 steps

Reverse
𝑡 steps

Chaotic	𝑲 = 𝟎. 𝟓

Start

Forward
𝑡 steps

Reverse
𝑡 steps

Localized	𝑲 = 𝟎. 𝟏

log(f)

time steps

Simply measure the fidelity
𝑓 = 𝜓>?@A>B|ψ@>CDE@

/

Chaotic à 
exponential decay 𝐞𝐱𝐩(−𝝀𝒕)

Localized à 
algebraic decay 𝒕%𝒅

[1] G. Benenti, et al., Quantum Info. Proc. 3, 273 (2004)
[2] Ph. Jacquod, et al., Adv. Physics 58, 67 (2009)

Noisy quantum computers can efficiently compute key signatures of 
chaos: Lyapunov rate 𝝀 = exponential separation of trajectories [1,2]
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Semiclassical theory predicts that fidelity has two components that 
decay at different rates*

𝒇 𝒕 ≈ 𝒇𝐐𝐮𝐚𝐧𝐭𝐮𝐦𝒆!𝚪𝐧𝐨𝐢𝐬𝐞𝒕 +𝒇𝐂𝐥𝐚𝐬𝐬𝐢𝐜𝐚𝐥 𝒆!𝛌𝐋𝐲𝐚𝐩𝒕 + 𝟏/𝑵

log(f)

time

Quantum Classical
Lyapunov

Fermi’s golden rule 

Fully 
Mixed

Weak Noise	𝚪𝐧𝐨𝐢𝐬𝐞

Strong Noise 𝚪𝐧𝐨𝐢𝐬𝐞

Quantum

Classical simulation
• K = 0.9
• n = 12 qubits

*M. D. Porter, I. Joseph, Quantum 6, 799 (2022)
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Fidelity phase diagram determines whether the Lyapunov rate 
can be observed*

Key Limitations
• Dynamics must be chaotic
• Lyapunov rate < noise decay rate
• Overall decay rate cannot be too fast
• Noise cannot be too strong or too weak

Key Requirements
• At least 6 qubits
• Noise must be reduced by 10-100x 
• Depends on architecture
－ Parallelization, layout, etc.

n=6

n=9

n=12

Noise decay 
rate 𝚪𝐧𝐨𝐢𝐬𝐞

Lyapunov 
rate l

*M. D. Porter, I. Joseph, Quantum 6, 799 (2022)
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time steps

fidelity

We performed the first gate-based quantum simulation proving that 
fidelity depends on dynamics in addition to gate-count* 

§Decay rate is faster for chaotic dynamics 
with same # of gates

• Only single-qubit rotation angles change

§Saturates at low and high values of K
• Increases during the transition to chaos, but

does not keep increasing with Lyapunov rate 

§Chaos generates delocalized entangled states 
that are more sensitive to noise

• Actual error rates are 3 – 5x larger than reported
• Lindblad decoherence model infers 

3x larger dephasing rate 1/ T2
*

IBM manilla: 3 qubits

Localized
K=0.1

Chaotic
K=3.6

*M. D. Porter, I. Joseph, arXiv:2206.04829

https://arxiv.org/abs/2206.04829
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Conclusions & Outlook

§Quantum computing holds great promise for accelerating scientific discovery
• Efficient Fourier transforms, sparse linear solvers, sparse Hamiltonian simulation, variational eigensolvers, …
• Chemistry, materials science, high-energy physics, nuclear physics, …,  fusion energy science!

§Quantum simulation of the PDF of nonlinear dynamical systems can achieve exponential 
speedup over Eulerian methods and up to quadratic speedup over Monte Carlo methods

• Simulations of fluids, plasmas, molecular dynamics, finance, ecology, epidemiology, …
• Quadratic speedup attained for high dimension and lack of smoothness
• Exponential speedup for end-to-end app’s likely requires problems with special structure

§Algorithms that utilize noise have potential for near-term quantum advantage
• Simulate open system dynamics with an open quantum system
• Passive and active error mitigation, e.g. quantum optimal control, are under extensive development
• Decoherence controls the “information confinement time”

I. Joseph, Y. Shi, M. D. Porter, et al, Phys. Plasmas 30 010501 (2023)
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Quantum Computing for Fusion Energy Science Applications
I. Joseph (LLNL), M. D. Porter (Sandia), Y. Shi (U Colorado Boulder), B. Evert (Rigetti), et al.

• Quantum computing holds great promise for accelerating scientific discovery
• Efficient Fourier transforms, sparse linear solvers, Hamiltonian simulation, variational eigensolvers, …
• Chemistry, materials science, high-energy physics, nuclear physics, …, fusion energy science!

• Quantum simulation of the PDF of nonlinear dynamical systems can achieve 
exponential speedup over Eulerian methods and up to quadratic speedup 
over Monte Carlo methods
• Simulations of fluids, plasmas, molecular dynamics, finance, ecology, epidemiology, …
• Quadratic speedup attained for high dimension and lack of smoothness
• Exponential speedup for end-to-end app’s requires problems with special structure

§Algorithms that utilize noise have potential for 
near-term quantum advantage
• Simulate open system dynamics with an open quantum system
• Passive and active error mitigation are under extensive development
• Decoherence controls the “information confinement time”

I. Joseph, Y. Shi, M. D. Porter, et al, Phys. Plasmas 30 010501 (2023)

Classical 
phase space

Quantum 
phase space
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Ilon Joseph Max PorterSteve LibbyJonathan DuBois Vasily Geyko Yuan ShiAl Castelli Frank Graziani Gabriel Woolls
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Quantum information science (QIS) may soon lead to 
game-changing capabilities for science in general
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We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon
detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light
source is developed, exploring the idea of stimulated emission of squeezed photons, which has
simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the
input squeezed states. The obtained samples are efficiently validated by inferring from computationally
friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We
show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal
nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against
possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert
space dimension up to ∼1043, and a sampling rate ∼1024 faster than using brute-force simulation on
classical supercomputers.

DOI: 10.1103/PhysRevLett.127.180502

The tantalizing promise of quantum computational
speed-up has been strongly supported by recent exper-
imental evidence from a high-fidelity 53-qubit super-
conducting processor [1] and Gaussian boson sampling
[2–4] (GBS) with up to 76 detected photons. Analogous
to the increasingly sophisticated Bell tests [5] that
continued to refute local hidden variable theories [6],
quantum computational advantage tests [7–9] are expected
to provide increasingly compelling experimental evidence
[1,2] against the extended Church-Turing thesis [10]. In
this direction, continued competition between upgraded
quantum hardware and improved classical simulations
[11–18] is expected and desirable.
Boson sampling, proposed by Aaronson and Arkhipov

[3], is a nonuniversal model of linear optical quantum
computation [19,20]. Realizing boson sampling with a
level of postclassical computational complexity requires
high-performance quantum light sources, a large-scale,
low-loss photonic circuit, and high-efficiency single-
photon detectors, all of which are essential building blocks
for universal quantum computation using photons. GBS

exploits squeezed vacuum states as input nonclassical light
sources, with the significant advantage of dramatically
increasing the output multiphoton click probability [4,21].
If the output outcomes are detected using photon-number-
resolving detectors, the probability amplitude of each
output outcome is proportional to the Hafnian of the
corresponding submatrix. This distribution is hard to
sample from under reasonable complexity conjectures
[4,22]. If threshold detectors are used to register the output
events, the related mathematical function is called
Torontinian [23], whose hardness is shown to be equivalent
to the Hafnian in the regime of dilute sampling [22–24].
In this work, we use threshold detectors. See the
Supplemental Material [25] for more discussions on its
computational hardness.
Experimentally, generating an increasingly large array of

squeezed states with, at the same time, near-unity photon
indistinguishability and collection efficiency, and suffi-
ciently high brightness, is still a nontrivial challenge
[2,35–37]. To increase the number of input squeezers or
their brightness, one typically uses stronger pump laser
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Quantum supremacy using a programmable 
superconducting processor

Frank Arute1, Kunal Arya1, Ryan Babbush1, Dave Bacon1, Joseph C. Bardin1,2, Rami Barends1, 
Rupak Biswas3, Sergio Boixo1, Fernando G. S. L. Brandao1,4, David A. Buell1, Brian Burkett1,  
Yu Chen1, Zijun Chen1, Ben Chiaro5, Roberto Collins1, William Courtney1, Andrew Dunsworth1, 
Edward Farhi1, Brooks Foxen1,5, Austin Fowler1, Craig Gidney1, Marissa Giustina1, Rob Graff1, 
Keith Guerin1, Steve Habegger1, Matthew P. Harrigan1, Michael J. Hartmann1,6, Alan Ho1, 
Markus Hoffmann1, Trent Huang1, Travis S. Humble7, Sergei V. Isakov1, Evan Jeffrey1,  
Zhang Jiang1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Paul V. Klimov1, Sergey Knysh1, 
Alexander Korotkov1,8, Fedor Kostritsa1, David Landhuis1, Mike Lindmark1, Erik Lucero1,  
Dmitry Lyakh9, Salvatore Mandrà3,10, Jarrod R. McClean1, Matthew McEwen5,  
Anthony Megrant1, Xiao Mi1, Kristel Michielsen11,12, Masoud Mohseni1, Josh Mutus1,  
Ofer Naaman1, Matthew Neeley1, Charles Neill1, Murphy Yuezhen Niu1, Eric Ostby1,  
Andre Petukhov1, John C. Platt1, Chris Quintana1, Eleanor G. Rieffel3, Pedram Roushan1, 
Nicholas C. Rubin1, Daniel Sank1, Kevin J. Satzinger1, Vadim Smelyanskiy1, Kevin J. Sung1,13, 
Matthew D. Trevithick1, Amit Vainsencher1, Benjamin Villalonga1,14, Theodore White1,  
Z. Jamie Yao1, Ping Yeh1, Adam Zalcman1, Hartmut Neven1 & John M. Martinis1,5*

The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of
quantum computational advantage to exponentially outpace the classical hardware and algorithmic
improvements. Here, we develop a two-dimensional programmable superconducting quantum processor,
Zuchongzhi, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize
the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up
to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is
estimated to be 2–3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor
[Nature 574, 505 (2019). We estimate that the sampling task finished by Zuchongzhi in about 1.2 h will take
the most powerful supercomputer at least 8 yr. Our work establishes an unambiguous quantum
computational advantage that is infeasible for classical computation in a reasonable amount of time.
The high-precision and programmable quantum computing platform opens a new door to explore novel
many-body phenomena and implement complex quantum algorithms.

DOI: 10.1103/PhysRevLett.127.180501

Introduction.—In the past years, encouraging progress
has been made in the physical realizations of quantum
computers [1–4], indicating a transition of quantum com-
puting from a theoretical picture to a nascent technology.
A major milestone along the way is the demonstration of
quantum computational advantage, which is also known as
quantum supremacy. It is defined by a quantum device that
can implement a well-defined task overwhelmingly faster
than any classical computer to an extent that no classical
computer can complete the task within a reasonable amount
of time.
To this end, recent experiments using 53 superconduct-

ing qubits and 76 photons have provided strong evidence to
demonstrate the quantum computational advantage and
subsequently disprove the extended Church-Turing thesis
[5–10]. Because of continuous improvements in the
classical algorithm and hardware [11–13] to compete with

the quantum computers, the demonstration of a quantum
computational advantage is not a single-shot achievement;
the quantum hardware has to be upgraded. It should be
emphasized that the increase of qubits is expected to
exponentially outpace the classical performance.
Simultaneously increasing the number of qubits and

high-fidelity quantum logic gates is also crucial for the
rapid development of noisy intermediate scale quantum
(NISQ) technology [14] and the demonstration of logic
qubit through surface code error correction [15–20].
Indeed, a wide range of near-term applications are being
investigated, including quantum chemistry [21–23], quan-
tum many-body physics [24–31], and quantum machine
learning [32–38].
Scaling up high-fidelity superconducting quantum pro-

cessors faces major challenges in the chip fabrication and
qubit control. In this work, we make progress toward
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China Demonstrates Quantum 
Encryption By Hosting a Video Call

A. Nordrum, IEEE Spectrum (2017-10-03)

§ Quantum Sensing: improves measurement sensitivity
— Heisenberg limit for noise/signal ratio scales as 

1/N instead of 1/sqrt(N)

§ Quantum Communications: secure information transfer
— Intrinsically parallel data transfer / data compression

§ Quantum Computing: polynomial or exponential 
gains in effective memory and computational power
— Fourier transform, linear solvers, Hamiltonian simulation, … 
— Today = Noisy Intermediate-Scale Quantum (NISQ) era
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Semiclassical wavefunction yields efficient unitary 
representation [1]
• Since quantum algorithms act naturally on wavefunctions, consider a “semiclassical” ansatz

• Assume that the phase evolves as a scalar with a source

• For classical dynamics, the classical Lagrangian 𝐿 𝑧, 𝑡 = 𝑝 ` 𝜕< 𝐻 − 𝐻(𝑥, 𝑝) is the natural choice
because it agrees with Feynman’s prescription for the path integral & has special Hamiltonian structure [2]

• Inserting the definitions leads to the “Koopman-van Hove” equation [1-3]

O𝑖ℏ𝜕/𝜓 0
= −𝑖ℏ 𝑉 S ∇𝜓 + ∇ S 𝑉𝜓 /2 − 𝐿𝜓

𝜓 𝑧, 𝑡 = 𝑓 𝑧, 𝑡 𝑒"2(0,/)

𝜕/ O𝜃
0
= −𝑉 S ∇𝜃 + 𝐿(𝑧, 𝑡)/ℏ |𝜕/𝜃 0! = +𝑉 S ∇𝜃 − 𝐿(𝑧, 𝑡)/ ℏ

O𝑖ℏ𝜕/𝜓 0!
= +𝑖ℏ 𝑉 S ∇𝜓 + ∇ S 𝑉𝜓 + 𝐿𝜓

[1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)                                   
[2] C. Tronci, I. Joseph, J. Plasma Phys. 87, 835870402 (2021)         
[3] I. Joseph, arXiv:2306.01865 (2023)

https://arxiv.org/abs/2306.01865
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Quantum algorithms for differential equations come in many flavors

§ Linear vs. Nonlinear
— For sparse Hamiltonians, quantum computers can exponentially speed up linear operations 
— Koopman & Carleman: Nonlinear systems can be embedded within an infinite-dimensional linear system

§ Deterministic vs. Stochastic
— Amplitude estimation can quadratically speed up Monte Carlo sums and integrals = observable estimation
— Quantum walks can quadratically speed up the mixing time of Markov chains = time to solution

§ Variational Algorithms and Quantum Machine Learning
— Classical computer can efficiently perform nonlinear operations that drive a quantum computer
— Quantum machine learning can potentially avoid the use of classical computers altogether except for I/O

§ Discrete vs. Continuous Variable computation for classical PDEs & quantum field theory
— Uses a quantum field theory as the computational basis
— Classical limit is a classical field theory, i.e. a set of PDEs such as Maxwell’s equations
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§ Trotter-Suzuki & Lie group decompositions [1] work well for 
specific Hamiltonians

§ Black box simulation methods work well for sparse Hamiltonians
— “Efficiently row-computable sparse” matrices
— Linear Combination of Unitaries (LCU) [2]; spectral methods [3]

§ Quantum signal processing (QSP) & qubitization [4], eigenvalue & 
singular value transformation [5] use block-encoded Hamiltonians
— Block encoding allows non-unitary operations to be performed!

[1] S. Lloyd 1996    [2] D. Berry 2017    [3] A. Childs 2021    [4] G. Low & I. Chuang 2017    [5] A. Gilyen 2019

Speedup requires exploiting special structure and/or sparsity
4
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FIG. 2: Classical simulation: dynamics of kinetic energy Wv
(a) and magnetic energy Wb (b) in space and time. The input

parameters are described in Sec. VI. The white line
indicates the HCR pair; the red line indicates the UHR; the

green line indicates the LCR pair (Fig. 1a). The
left-propagating wave reaches the HCR pair, partially

reflects from it and partially tunnels to the UH resonance.
The right-propagating wave is trapped within the UHR, and
only a small part of its energy reaches the right boundary.

Since the source Q interacts with the wave magnetic field
only at the center of the system (Eqs. 9f-9g, Fig. 3), it
does not enter the boundary conditions. The corresponding

0 1 jq1 jq2 Nx �2 Nx �1

�r0/kx xq1 xq2 r0/kx

FIG. 3: One-dimensional space grid x 2 [�r0/kx,r0/kx]
has Nx points numerated by index j, starting with j = 0.

The source Q is placed at points xq1 and xq2 that correspond
to the indices jq1 and jq2 .

Hamiltonian can be expressed as

H =

0

BBBBB@

0 �iB0 �i
p

n 0 0 0
iB0 0 0 �i

p
ne 0 0

i
p

n 0 0 0 0 0
0 i
p

ne 0 0 Mh 0
0 0 0 Mh 0 Mb
0 0 0 0 Mb Mwa

1

CCCCCA
. (15)

Here, e = diag(0,1, ...,1,0), Mh is the matrix representation
of the operator dx:

Mh =

0

BBBBBBBB@

0 0 0 0 ...
0 0 � i

2h 0 ...
0 i

2h 0 � i
2h ...

... ... ... ... ...

... i
2h 0 � i

2h 0
... 0 i

2h 0 0
... 0 0 0 0
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CCCCCCCCA
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The matrix Mb describes the source-wave coupling

Mb =

0

BBBBB@

... ... ... ... ... ...

... 0 0 0 0 ...

... 0 �b 0 0 ...

... 0 0 �b 0 ...

... 0 0 0 0 ...

... ... ... ... ... ...

1

CCCCCA
, (17)

while Mwa encodes the source frequency:

Mwa =

0

BBBBB@

... ... ... ... ... ...

... 0 0 0 0 ...

... 0 �wa 0 0 ...

... 0 0 �wa 0 ...

... 0 0 0 0 ...

... ... ... ... ... ...

1

CCCCCA
. (18)

Here, B0 is a diagonal Nx⇥Nx matrix with values of the back-
ground magnetic field on the diagonal. The matrix that en-
codes

p
n(x) has the same form. The coefficients b and wa

are placed at the diagonal elements ( jq1 , jq1) and ( jq2 , jq2) of
the matrices Mb and Mwa . Finally, the values i/2h are shifted
by +1 and �1 with respect to the diagonal of the matrix Mh.

D. Quantum encoding of plasma signals

To encode our discretized system into a quantum circuit,
we map y on two registers: |di and | ji. The register | ji has
nx = log2 Nx qubits and stores the space dependence of every
variable. That is, | ji contains the binary representation of the
spatial-point indices in the x-grid. The register |di encodes
the variable index:

d = 0 ! xx, (19a)
d = 1 ! xy, (19b)
d = 2 ! Ẽx (19c)

etc. Since we have six independent fields in y , the register
|di must have at least three qubits. Then,

y = Ad, j |di | ji ⌘ Ad, j |d2d1d0id | jnx�1... j2 j1 j0i j , (20)

I. Novikau, E. Startsev, I. Dodin
Phys. Rev. A 105, 062444 (2022)

𝑒P(Q&R) ≈ ∏8S(
P 𝑒R/%𝑒Q𝑒R/%= 𝑒!R/% ∏8S(

P 𝑒R𝑒Q 𝑒R/%
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§ Choose a basis for finite-dimensional numerical discretization

— Possible choices of basis functions 𝜙* 𝑧
• Spectral [1,2] 𝑒"#$, orthogonal polynomials 𝐻#(𝑧), etc., …
• Finite difference & finite element: local orthogonal polynomials 
• Carleman linearization [3,4]: polynomials 𝑧%
• Reproducing Kernel Hilbert Spaces [2]: allow pointwise evaluation

§ If the evolution is unitary, use the quantum Hamiltonian simulation algorithm (QHSA) [1,2]

§ Otherwise, use the quantum linear differential equation solver algorithm (QLDA) [3,4]
— Uses quantum linear solver algorithm (QLSA) to propagate forward for small timesteps 𝛥𝑡

Sparse linear evolution can be solved using black-box methods

𝜓(𝑧, 𝑡) =\
P

𝜓P 𝑡 𝜙P(𝑧)

𝑖ℏ
𝑑
𝑑𝑡
𝜓P =\

W

𝐻PW𝜓W

𝜓 𝑡 = 𝐔X11YZ.𝜓 0 ≈ Τ	𝑒!" ∫ 𝐇=//ℏ	𝜓 0

1 + 𝑖𝛼𝐇Δ𝑡/ℏ 𝜓(𝑡 + Δ𝑡) ≈ 1 − 𝑖𝛽𝐇Δ𝑡/ℏ 𝜓 𝑡1 = 𝛼 + 𝛽
semi-implicit time 

splitting
[1] I. Joseph, Phys. Rev. Research 2, 043102 (2020)
[2] D. Giannakis, A. Ourmazzi, P. Pfeffer, et al., arXiv:2012.06097 (2022)
[3] Jin-Peng Liu, H.Ø. Kolden, H.K. Krovi, et al., PNAS 118, e2026805118 (2021)
[4] A. Engel, G. Smith, S. P. Parker, Phys. Plasmas 28, 062305 (2021)
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Quantum walks yield up to quadratic speedup for solving 
stochastic differential equations (SDEs)
§ Quantum walks can speedup random walks [1] and Hamiltonian simulation [2]

— Quadratic speedup of the mixing time of Markov processes [1]

§ Quantum algorithms for sums and integrals [3] are based on quantum walks & accelerate 
the solution of SDEs [4] and Monte Carlo algorithms [5]
— Algorithm for turbulent mixing rate and turbulent reaction rate [6]
— Algorithm for diffusion, Navier-Stokes [7], and radiation-hydrodynamics

§ Also leads to new methods for solving multi-level SDEs [8]
— Algorithms for finance, Monte-Carlo collision operators, …

[1] M. Szegedy, FOCS 2004 [2] A. Childs, Comm. Math. Phys. 2010  
[3] S. Heinrich & E. Novaks, 2001 [4] B. Kacewicz, J. Complexity 2004  [5] A. Montanaro, PRSA 2015 
[6] F. Gaitan, Nature Phys. 2021  [7] G. Xu, et al AIAA J. 2018  [7] D. An, et al, Quantum 2021
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§ Let a classical computer do the nonlinear work …

— The classical computer iteratively solves a nonlinear 
optimization problem using standard techniques
The parameters to be optimized are encoded within the quantum 
program that will be run by the quantum computer

— At each step, the quantum computer evaluates a 
computationally challenging cost function 
e.g. based on a Hamiltonian with many degrees of freedom

Approach #3: Hybrid classical-quantum variational algorithms

[1] M. Lubasch, et al, PRA 2015                  [2] I. Joseph, et al, Phys. Plasmas 2023 
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§ Let a classical computer do the nonlinear work …

— The classical computer iteratively solves a nonlinear 
optimization problem using standard techniques
The parameters to be optimized are encoded within the quantum 
program that will be run by the quantum computer

— At each step, the quantum computer evaluates a 
computationally challenging cost function
e.g. based on a Hamiltonian with many degrees of freedom

§ Complete data exchange generically only admits up to quadratic speedup

§ Perhaps a high-order linear quantum model interacting with a low-order nonlinear classical 
reduced model can obtain exponential improvement [2]?

Approach #3: Hybrid classical-quantum variational algorithms

[1] M. Lubasch, et al, PRA 2015                  [2] I. Joseph, et al, Phys. Plasmas 2023 
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Variational algorithms have a few key steps …

[1] M. Lubasch, et al, PRA 2015                 [2] L. Bittel & M. Kliesch, PRL 2021 

§ For each time step, iterate until convergence [1]:
— Prepare initial ansatz
— Solve equations using Hamiltonian simulation
— Measure cost function and, potentially, gradients of the cost function
— Execute step of classical optimization algorithm 
— Update ansatz
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§ For each time step, iterate until convergence [1]:
— Prepare initial ansatz
— Solve equations using Hamiltonian simulation
— Measure cost function and, potentially, gradients of the cost function
— Execute step of classical optimization algorithm
— Update ansatz

§ Optimization landscape may have intrinsic difficulties such as …
— Many local maxima and minima 
— Barren plateaus with little information on the gradient of the cost function

§ NP-complete optimization problems may not have any quantum advantage at all [2]

Variational algorithms have a few key steps … 
and a few key limitations 

[1] M. Lubasch, et al, PRA 2015                 [2] L. Bittel & M. Kliesch, PRL 2021 

NASA Earth Observatory:
Himalayas
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PDEs are naturally encoded in the Continuous Variable (CV) 
model of quantum computing 

§ Digital quantum computers are actually made out of quantum fields
— Photons, electrons, ions, atoms, …

§ Quantum field theory (QFT) is the quantum counterpart of classical field theory (PDEs)
— In the large number limit, quantum fields approach a classical field

§ The Continuous Variable (CV) model of quantum computation uses quantum fields directly
— The CV model has similarities with the analog model of classical computation
— Average position and phase are CV

§ The CV model allows one to emulate PDEs and QFTs with basic QFTs: Dirac, Photon, …
— Similar to a ”Wind Tunnel” or “Optics Experiment”: works well for the task at hand, but not likely one can 

control everything perfectly
 

[1] Arazzola          [2] Shi Jin & Nana Liu        [3] Vahala
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Amplitude estimation of physical observables1�3 is up to quadratically more
efficient than best classical methods

• Expectation value hOi =
P

x
O(x)f(x) can be found by simulating a reversible classical

computation of

�(x) := O1/2(x) (x) �
0(x) :=

q
1� |�(x)|2 |�i :=

X

x

�(x) |xi / k�k

• Add an ancillary qubit to | i and compute a state proportional to |�i

R� | i |0i :=
NX

x=1

|xi (�0(x) |0i+ �(x) |1i) /N1/2 = cos (✓) |�0i |0i+ sin (✓) |�i |1i

• Amplitude estimation of the ancillary |1i state probability yields sin2 (✓) = hOi/N with
complexity ⇠ QH/✏

1D. S. Abrams and C. P. Williams, arXiv:quant-ph/9908083 (1999)
2S. Heinrich and H. Novak, Proc. 4th Int. Conf. on Monte Carlo and Quasi-Monte Carlo Methods, Hong Kong 2000, Springer-Verlag (2002)
3A. Montanaro, Proc. R. Soc. London, Ser. A 471, 20150301 (2015)
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Motivation: Can we simulate chaotic dynamics on
near-term universal quantum devices?

1A. Peres, PRA 30.4 (1984) 1610
2Ph. Jacquod et al., Advances in Physics 58.2, 67-196 (2009)
3R. A. Jalabert, H. M. Pastawski, PRL 86.12, 2490 (2001)
4G. Benenti et al., PRL 87.22, 227901 (2001)

nqubits=6

nqubits =9

nqubits =16

Quasiprobability (Husimi Q)

Classical phase space

§ Interesting quantum simulations usually contain chaotic regions
— Quantum chaotic simulations are important for many body localization, black 

hole information scrambling, classical chaos, …

§ Efficient detection of quantum chaos can come from quantum-
classical correspondence
— Quantum systems recover classical limit at small ℏ, but require many qubits
— Quantum fidelity decay of perturbed Hamiltonian evolution can reveal classically 

chaotic or regular dynamics1,2
— For chaotic dynamics, quantum fidelity can decay at the rate of the Lyapunov 

exponent 𝜆, which measures the exponential divergence of classical trajectories3

§ Quantum maps allow efficient simulation of chaotic dynamics4

— A quantum map decaying at the Lyapunov rate may be the most resource-
efficient signature of quantum chaos
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To date, we’ve used superconducting hardware 
platforms & are starting to use ion traps

IBM-Q
Eagle

127 qubits

Rigetti
20 qubit device
(Aspen-M series 
have ~80 qubits)

|0⟩

|2⟩
|3⟩

|1⟩

LLNL 
Quantum
Design & 

Integration
Testbed 
(QuDIT)

~ 6 qubits

Sandia 
Peregrine
6 qubits

§ IBM-Quantum Experience
— Open but limited access to 5 qubit devices with relatively good fidelity

§ Rigetti Quantum Cloud Services
— Rigetti-LLNL-USC Collaboration

§ LLNL Quantum Design and Integration Testbed (QuDIT)
— Open access to 3-level and 4-level qudits rather than 2-level qubits
 

§ Sandia QSCOUT 
ion trap
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§ Infidelity for realistic calculations is ~2-5x worse than expected
— Fidelity does not always decay at an exponential rate
— Coherent gate errors are important and need to be corrected for
— Coherent errors can be much more damaging to intended calculations

§ “Fidelity” is the figure of merit: 𝑭 = 𝝍𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝|𝝍𝐚𝐜𝐭𝐮𝐚𝐥
𝟐

— Single qubit gate fidelity (IBM-Q):  99.9%  --> 700 useful operations before 50% 
— Two qubit gate fidelity (IBM-Q):  99.5%  --> 140 useful operations before 50% 
— State preparation & measurement (SPAM): 95%     --> error at beginning and end

Lack of error-correction limits fidelity of present-day calculations

Algorithm Testing on IBMQ Devices

Gabriel Woolls

June 8, 2021

1 Quantum Fourier Transform (QFT)

The QFT algorithm maps states in the “computational” basis |xi = |qn�1...q0i to Fourier states |x̃i
of the form

|x̃i = 1p
2n

⇣
|0i+ e

2⇡ix/2|1i
⌘
⌦

⇣
|0i+ e

2⇡ix/22 |1i
⌘
⌦ · · ·⌦

⇣
|0i+ e

2⇡ix/2n |1i
⌘

This is to say that whereas “computational basis” states |xi = |qn�1 . . . q0i encode information in
the z�spin of each qubit (i.e. the polarity of the Bloch vectors), Fourier basis states encode the
information in the phase of the Bloch vectors about the z�axis.

Figure 1: a. Example QFT circuit with 3 qubits. Here we prepare the state |6i = |110i = (X ⌦
X⌦ I)|000i and apply UQFT to obtain its Fourier dual |6̃i. b. Visual representation of the prepared
Fourier state.

One way to extract a “fidelity” from a noisy QFT implementation is to (1) prepare Fourier states
|x̃i = UQFT |xi “by hand,” using only single-qubit gates to encode the correct phase into each qubit,

and then (2) applying the inverse QFT circuit U †
QFT . In an ideal device, the output state would be

exactly |xi, i.e. the Fourier dual of the state we prepared “by hand”. We can thus obtain a fidelity
by comparing the outcome measurement distribution to the ideal |xi.

The hard-coding step, i.e. preparing a Fourier state |ñi with only single-qubit gates, is shown in
figure 2. After “inverting” this state with an inverse QFT, we should return to the corresponding
|ni state (see fig. 3 for a classical simulation of this).

1

QFT circuit for 3 qubits

Gabriel Woolls LLNL - PLS

We can expect that circuit depth and/or gate count (in particular CX count since multi-qubit gates
dominate over single-qubit gates in error) may be an important factor in determining circuit per-
formance. We plot circuit fidelity vs. circuit depth and vs. CX-count in fig. 7, for each quantum
device. While neither factor is a perfect predictor, they both serve as decent proxies.

Figure 7: Circuit fidelity vs. number of nonlocal gates, and vs. circuit depth, for the QFT tests on
each IBMQ device.

1.2 QFT Test 1 – Gate Error Analysis

In fig. 7 we perform an exponential fit of QFT circuit fidelity against both number of CX-gates and
circuit depth. In each case, we extract an approximate error rate b such that fidelity ⇠ exp(�bx),
where x is either CX-count or depth. In this section we compare these estimated error rates to the
gate error rates reported for each IBMQ device, as given in the backend.properties attribute.

1.2.1 ibmq belem gate errors

The qubit map for ibmq belem is shown in fig. 8a. Nodes represent the device’s qubits, and edges
are shown connecting any qubits that support pair interactions (CX gates). Not every pair of qubits
interacts with the same error rate; graphically, darker edges represent less error prone CX gates.

5

QFT fidelity vs
 CX gate count
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Grover’s search algorithm can be modified to directly work on 
LLNL’s 3-level QuDIT

§Search on 3 items has a 92.6% success probability on the first iteration

§Compare to 2-qubits: search on 4 items has 100% success on 1st iteration

0.9259 0.9784 0.9996

𝑈" 𝑈#

Repeat nit times

Search
Oracle

Grover
Diffusion

Fourier
Transf.

QFT

|0⟩

|2⟩
|1⟩
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The performance of Grover’s search can be improved using 
optimal control [1]

§ Tests on IBM-Q, Rigetti, and LLNL QuDIT demonstrate reasonably good performance for 
1-11 iterations
－ Optimal control effectively improves hardware performance

Rigetti          IBM-Q          QuDIT 

Expt. fidelity after 11 iterations

[1] V. I. Geyko, et al., “Using Grover's search algorithm to test 
present state-of-the-art quantum computing platforms” (2023)

𝑈" 𝑈#

Repeat nit times

Search
Oracle

Grover
Diffusion

Fourier
Transf.

QFT
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The phase transition between diffusive and localized dynamics is 
clearly observable on IBM-Q

fully mixed at 0.25
fully mixed at 0.125

low peak due 
to noise

𝑘&'( < 2	

2 qubit IBM experiment

𝑘&'( < 2	𝑘 = 0.1, 𝑡 = 1
𝑘 = 0.1, 𝑡 = 2
𝑘 = 0.7, 𝑡 = 1
𝑘 = 0.7, 𝑡 = 2

Statistical error
= 1/ 8,192	

~1%

3 qubit IBM experiment

𝑘 = 0.1, 𝑡 = 1
𝑘 = 0.1, 𝑡 = 2
𝑘 = 0.7, 𝑡 = 1
𝑘 = 0.7, 𝑡 = 2
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What about Generalized Eigenvalue Problems (GEVP)?

§ Generalized Eigenvalue Problem:

－ Assume 𝐀 is Hermitian and sparse
－ Assume 𝐁 is symmetric positive definite (SPD)

§ Any SPD matrix, B,  has a unique SPD square root 𝐁.// 

§ The problem can be reduced to standard Hermitian form using the transformation

 

§ In general, 𝐇 will not be sparse and, hence, QPE will not be efficient, unless …

§ For special 𝐁, e.g. diagonal or block diagonal, then both 𝐁%.// and 𝐇	are also sparse

𝐀𝑣 = 𝜆𝐁𝑣

𝐇𝑢 = 𝜆𝑢𝑢 = 𝐁g/h𝑣 𝐇 = 𝐁ig/h𝐀𝐁ig/h

J. B. Parker and I. Joseph arXiv:2002.08497 (2020)
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FES Application: MHD plasma stability is a GEVP

§ Linear Ideal MHD is routinely used for plasma stability calculations of magnetic confinement fusion 
experiments and reactor designs

§ Fundamental Theorem of MHD:  Force operator, 𝐅 𝐱 , is a self-adjoint 2nd order differential operator [I. B. 
Bernstein et al. (1958)] 

§ Numerical approximations such as finite differences, finite volume, and finite elements in the position, 𝒙, basis 
typically lead to a sparse banded matrix for F and block-diagonal	𝝆

Hermitian form:

Quantum phase estimation can be applied to ideal MHD stability
Is this a route to fast stability calculations for design optimization or feedback control?

J. B. Parker and I. Joseph arXiv:2002.08497 (2020)

𝒖 = 𝜌g/h𝛏 𝐇 = 𝜌ig/h𝐅𝜌ig/h 𝐇 . 𝒖 = −𝜔h𝒖

𝐅 . 𝛏 = −𝜔h𝜌𝛏
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