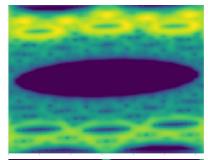
Quantum Computing for Fusion Energy Science Applications

I. Joseph (LLNL), M. D. Porter (Sandia), Y. Shi (U Colorado Boulder), B. Evert (Rigetti), et al.

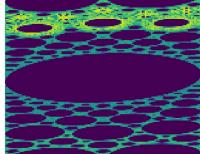
Quantum computing holds great promise for accelerating scientific discovery

- Efficient Fourier transforms, sparse linear solvers, Hamiltonian simulation, variational eigensolvers, ...
- Chemistry, materials science, high-energy physics, nuclear physics, ..., fusion energy science!
- Quantum simulation of the PDF of nonlinear dynamical systems can achieve exponential speedup over Eulerian methods and up to quadratic speedup over Monte Carlo methods
 - Simulations of fluids, plasmas, molecular dynamics, finance, ecology, epidemiology, ...
 - Quadratic speedup attained for high dimension and lack of smoothness
 - Exponential speedup for end-to-end app's requires problems with special structure


Algorithms that utilize noise have potential for near-term quantum advantage

- Simulate open system dynamics with an open quantum system
- Passive and active error mitigation are under extensive development
- Decoherence controls the "information confinement time"

с С


Classical

phase space

Quantum

phase space

LLNL- PRES-857541

I. Joseph, Y. Shi, M. D. Porter, et al, Phys. Plasmas **30** 010501 (2023)