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On Dec 5, 2022, fusion ignition was achieved at the
National Ignition Facility in Livermore, California

Department of Energy

DOE National Laboratory Makes History

by Achieving Fusion Ignition

DECEMBER 13, 2022
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Scientists Achieve Nuclear Fusion

Breakthrough With Blast of 192 Lasers

The advancement by Lawrence Livermore Natiorhlal Laboratory
researchers will be built on to further develop fusion energy
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Applications of ignition include stockpile stewardship,
IFE, and fundamental science

(Clean Energy

Inertial Fusion

Energy for
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Ignition experiment advances stockpile stewardship
mission
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We predicted a high probability of achieving gain > 1
using data-informed uncertainty on the first-ever ICF
experiment to achieve ignition
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We predicted a high probability of achieving gain > 1
using data-informed uncertainty on the first-ever ICF
experiment to achieve ignition
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ICF introduction

Pre-ignition — designing to improve
performance

Ignition — first repeatability campaign

CogSim variability model and
prediction of Dec 5, 2022 ignition shot

Predictions of new designs and
potential applications in optimization

and IFE
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National Ignition Facility (NIF) is home to indirect-drive
inertial confinement fusion (ICF) experiments
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National Ignition Facility (NIF) N /,
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~10 DT (full scale) experiments per year
~ 2 MJ laser energy
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Fraction of the 2.05MJ delivered by laser is delivered to
the fuel capsule, ultimately releasing fusion energy

Implosion process
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Zylstra et al., Nature 2020

We need to get the fuel sufficiently hot and dense for sufficiently long time to ignite
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Achieving fusion ignition at the National Ignition Facility
has a history spanning at least half a century

1972 1975 1977 1984 1997 2001 2021 2022

NATURE VOL. 239 SEPTEMBER 15 1972 139

Laser Compression of Matter to Super-High
Densities: Thermonuclear (CTR)
Applications

JOHN NUCKOLLS, LOWELL WOOD,
ALBERT THIESSEN & GEORGE ZIMMERMAN

University of California Lawrence Livermore Laboratory
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Achieving fusion ignition at the National Ignition Facility
has a history spanning at least half a century

1972 1975 1977 1984 1997 2001 2010 2012 2021 2022
_— -

Large ensembles of simulations
Neural network surrogates
Experiments

NATURE VOL. 239 SEPTEMBER 15 1972 139

Laser Compression of Matter to Super-High

Densities: Thermonuclear (CTR) o
Applications Bayesian inference

JOHN NUCKOLLS, LOWELL WOOD, Spar§e Sampllng o :
ALBERT THIESSEN & GEORGE ZIMMERMAN Physics-informed prediction” with

University of California Lawrence Livermore Laboratory d ata_i nfo rm ed u n Ce rtai nty
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Before N210808, the main focus of the ICF experiments
at NIF was to increase the yield and learn

Pre-ignition

Focus on performance
and learning
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We can identify major turning points by looking at a plot
of thermonuclear output versus time
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We can identify major turning points by looking at a plot
of thermonuclear output versus time
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We can identify major turning points by looking at a plot
of thermonuclear output versus time
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We can identify major turning points by looking at a plot
of thermonuclear output versus time
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Further improvements to hohlraum efficiency and implosion design
“Threshold of ignition” in August 2021 with Lawson > 1, target gain = 0.7

Repeat experiments demonstrated extreme sensitivity of design
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We can identify major turning points by looking at a plot
of thermonuclear output versus time
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Indirect-drive ICF experiments are typically designed using
integrated simulations and analyzed using capsule simulations

Experimental inputs Low-res preshot Experimental
predictions measurement

Neutron yield
DSR
lon temperature
Hot spot velocity
Bang time
Shape
Radius
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Indirect-drive ICF experiments are typically designed using
integrated simulations and analyzed using capsule simulations

Experimental inputs

Experimental Capsule inputs ~ degradations
measurement * Hard to observe or simulate
« Explain performance

Asymmetry

=

X-ray rive capsule

Low-res preshot Experimental

predictions measurement

Hi-res postshot Neutron yield

analysis DSR
lon temperature
Hot spot velocity
Bang time
Shape
Radius

We are using machine learning and Bayesian statistics to improve post-shot analyses and quantify uncertainties
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CogSim team uses Markov Chain Monte Carlo method to infer
capsule inputs that match the experimental data

Caps

8D hypercube
of inputs

Train NN surrogate on ~30K sims
Experimental Capsule inputs ~ degradations

measurement
. Forward model
Neutron yield
NN surrogate

Shock Timing  Mix

Surrogate Experimental
predictions

measurement

Neutron yield

-
-

Bayesian inference requires ~10”6 evaluations of the forward model, therefore we cannot use simulations directly
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CogSim models include multiple inputs and outputs

Experimental / simulated outputs

Capsule inputs ~ degradations
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Once the 1 MJ threshold was reached during N210808, a
series of “repeat” experiments followed

Focus on both higher gain

and variability

1.0 A

sl N210808
1.3MJ
‘Repeat”
shots
Variations in:
target delivery
capsule quality

Neutrons 13-15 MeV

2021 2022 2023

CogSim effort was to turn this new class of experiments into a quantitative model of the variability
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One part of our statistical model is inferred capsule inputs for
individual shots
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Using N210808 + repeats, we have built a statistical model of the
variability
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Using N210808 + repeats, we have built a statistical model of the
variability
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Our method to estimate the variability has multiple
advantages over the naive approach

Naive approach Our approach allows:
« Fit 1D gaussian to the Outputs to be non-Gaussian
experimental yield Multiple outputs: more detailed prediction
Correlations informed by simulations rather than by experiments alone
Physical interpretation (degradations can inform future designs)
Extrapolations that are physically viable (constrained by simulations)
Transfer to new designs to make predictions

log, yield 800 logqo yield ~ '*°
13-15 MeV 13-15 MeV

17.75 17.75
17.50 17.50
17.254 17.25
17.00 17.00
16.751 16.75
16.501 16.50

16.25 16.25

. 16.00
16.00 L5

2.5 3.0 3.5 4.0 4.5
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The surrogate model of the simulations can be
transformed to predict the output variability in new

designs

A standard ICF surrogate in 8D requires ~30K

simulations

We may be limited to a two—week lead time to

make predictions

Solution:

1) Run dozens of simulations at carefully

selected locations determined by
Stochastic Collocation

2) Transfer learn the surrogate model to a
new design

Alnput 2

P Input 1

New simulations

Alnput 2

» Input 1

N210808 design

Neural network surrogate

Transfer learned neural
network surrogate

Output 2
A p

N210808
design

P Output 1

AOutput 2 0

P Output 1
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The variability model captures the experimental results
for the shots with the N210808 (1.9 MJ) design

Yield (M))
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Predictions of N221204 with the new 2.05MJ design
indicate a significant increase in the probability of
ignition

Yield (M))
: 'Shot | Probability of ignition
N210808 7 %

10

Laser energy
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1072

2.5 3.0 3.5 4.0 45
AnDSR
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Subsequent shots with the 2.05MJ design validated the
predictions

Yield (M))
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Predicting ignition is just the beginning; our method can
be applied in future design decisions

Applications

* Design optimization for higher gains in
« Stockpile stewardship
 |IFE

Our method can expand design optimization beyond performance and include variability
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Subsequent shots with the 2.05MJ design validated the
predictions
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Subsequent shots with the 2.05MJ design validated the
predictions

Yield (M))
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Our predictions could potentially be used to inform
decision about future facility upgrades

Yield (M)) teau may be
: mance plateau ¥
! ‘::icr)\red after the facility upgraf
101?
We have made a
demonstration in this regime
10°
30,000 2D HYDRA
1071 simulations with varying
] drive, asymmetry, and mix
: o 1 sl O
1072 — . l .
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Different point designs can be compared against each other in

terms of the variability

Capsule inputs ~ degradations

Inferred
variability

Transfer learned
surrogate A

Transfer learned
surrogate B

Transfer learned
surrogate C

Predictions A

Predictions B

Predictions C
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Our technique can estimate the variability in different candidate
designs before they are tested experimentally
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Our technique can estimate the variability in different candidate
designs before they are tested experimentally
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Our technique can estimate the variability in different candidate
designs before they are tested experimentally
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Our technique can estimate the variability in different candidate
designs before they are tested experimentally
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The variability could potentially be used as a robustness metric
in the semi-automated design optimization loop

Experimental inputs

Use variability as a metric in optimization

y
\ target Use variability as a metric in optimization

Use variability as a metric in optimization

Capsule inputs ~ degradations Transfer learned Predictions
surrogate A

Inferred

Gelizzlelll Transfer learned
surrogate B

Transfer learned
surrogate B L
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Our method to compute the variability could potentially
be applied in IFE and MFE projects

. FUNDING FOR FUSION COMPANIES

: . ~$300M
el $6,210,890,875 ($6.2bn) :l- into IFE
privae  $5,939,271,000 ($5.9bn) Public
f
LocatioN $27 l,620,060

By primary HQ

Canada Sweden

UK
USA @ @Ge’"‘a"y China

® F,ance@gy 6 % Qg

Australia

New Zealand

Fusion Industry Associates
The Global Fusion Industry in 2023

Ignition provides fresh impetus and the scientific foundation for inertial fusion energy
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We’ve formed an “IFE Collaboratory” to facilitate public-
private partnerships

* Living website: https://events.bizzabo.com/RFI-
IFE/home

* Collaboratory website lists capabilities

* Two Industry Days held

e Currently developing ideas for “hubs” focused on
jointly developing technologies of use to multiple
institutions/companies/IFE approaches
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The Collaboratory promotes fairness of opportunity for partnerships, and ensures strategic alignment with core missions
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In October, we started a 3-year R&D project for
developing targets for IFE

Applications

« What are the requirements for target
production to reach the required gain?

Required

Variabilit

Yield

Probability

yal
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We have made a physics-informed prediction with data-
informed uncertainty of the first ICF experiment with
target gain>1

Yield (M))
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One part of our statistical model is inferred capsule inputs for
individual shots

lel8
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Prediction

Prediction

The model predictions match multiple experimental outputs
within experimental error bars

log10(yield 1315)
“.

“"’
r
17 |
1077 4 ‘\\
] ‘ “~Individual
,v' shots

1017
Experiment

nisp_PO

0.006 -
——
#

0.004 - _¢_‘,f‘='_

0.004 0.006
Experiment

Simulation

cumulant_DT_equator_temp

.S 104
© —
E &
£, 4
n 5
5 10
Experiment
nisp_P2
0.001 1 .
&
o
0.000 1
o“.‘.
~0.001] —#—=
~0.0021

—0.002 —0.001 0.000 0.001

Experiment

©
o

©o
N

Simulation

o
N

150 1

Simulation

nuc_bang_time

100 1

U1
o

92 94 96
Experiment

vshift_spole

50 100 150
Experiment

Simulation

N

w

4piDSR

¢‘.‘ ‘
3 4
Experiment

Lawrence Livermore National Laboratory
LLNL-PRES-857423

NOYSE 45

National Nuclear Security Administration



We compare the variability in three experimentally untested

designs

~

= KC1059 capsules available in
mid-2023

= |Lower dopant level: 0.42% vs
0.63%

= 1 um thinner ablator
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The variability model combines the individual single-
shot Bayesian analysis into one global input variability

Experimental Data

N211024 JE

Bayesian

N211107 R
g Inference

N211121

» HYDRA Input Parameters
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Codes predict qualitative transitions; experiments
approach the compressive ignition phase

Yield (M])
] Rapid burn-up before disassembly
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neutron production
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Fusion has different applications and approaches

4 )

Science @g“ﬂ;; t The Inertial Confinement Fusion and High Yield (ICF)
AYAAAS iﬁq / “1‘1‘ KDy

1O IPFEL S S Program supports the mission of the U.S. Department of

BRrotol =5 Energy (DOE)/National Nuclear Security Administration
(NNSA) to maintain a safe, secure, and effective nuclear
deterrent by creating experimentally diagnosable platforms
that access extreme temperature, pressure, and density
regimes relevant to nuclear weapons performance.!
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Indirect-drive inertial confinement fusion (ICF) adds a
“hohlraum” (radiation cavity) to drive the capsule more
symmetrically with x-rays

Hohlraum Cross- Implosion Phases
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There is a growing interest in estimating the variability
in new laser-driven fusion designs

Pre-ignition Applications
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