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Computationally expensive models with uncertain code parameters are (A
ubiquituos in magnetic confinement fusion energy research &/

Fusion performance
~ plasma turbulence

https://genecode.orqg/
F. Jenko, et al. PoP 2000

Power exhaust and heat load
control ~ plasma-neutral-
materials interactions

Py = 150 MW
I, core = 3.5 X 102 at/s

The, core = 7 X 10%° at/s

z[m]
o

6 8 10 ¥
R [m]
L. Aho-Mantila, et al. Nucl. Mat. Ene. 2021
https://doi.org/10.1016/j.nme.2020.100886
SOLPS-ITER: S. Wiesen, et al. J. Nucl. Mat. 2015

https://doi.org/10.1016/j.jnucmat.2014.10.012

Prediction of off-normal
events and disruptions ~
rapidly evolving thermal and
relativistic populations & fields

6.05 ms

>

526 ms

°
J(MA/mA2)

| ‘ i::
E. Nardon, et al. Nucl. Fusion 2023
https://doi.org/10.1088/1741-4326/acc417

JOREK: Hoeltzl, et al. Nucl. Fusion 2021
https://doi.org/10.1088/1741-4326/abf99f
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Due to the uncertain code parameters, a single forward simulation is rarely (A
{18

sufficient to actually quantify the prediction uncertainty &

Common problem statement

Given limited resources of wall clock time or HPC hours, it is not tractable to simply simulate
all possible model configurations. Therefore, the question is how to best use the available
resources to optimally quantify the uncertainties?
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Due to the uncertain code parameters, a single forward simulation is rarely (A
sufficient to actually quantify the prediction uncertainty &

Common problem statement

Given limited resources of wall clock time or HPC hours, it is not tractable to simply simulate
all possible model configurations. Therefore, the question is how to best use the available
resources to optimally quantify the uncertainties?

Forward UQ ~ Uncertainty propagation

Input Model Output
Probability —— Computationally — Distributions of
distributions expensive model model

of code parameters 6 y =1(6, ®, g predictions y

Aaro Jarvinen | IAEA Workshop on Al for Accelerating Fusion and Plasma Science | 29.11.2023 | Page 4



Due to the uncertain code parameters, a single forward simulation is rarely (A
sufficient to actually quantify the prediction uncertainty &

Common problem statement

Given limited resources of wall clock time or HPC hours, it is not tractable to simply simulate
all possible model configurations. Therefore, the question is how to best use the available
resources to optimally quantify the uncertainties?

Forward UQ ~ Uncertainty propagation
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Probability —— Computationally — Distributions of
distributions expensive model model
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Inverse UQ ~ Parameter calibration
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Due to the uncertain code parameters, a single forward simulation is rarely (A
sufficient to actually quantify the prediction uncertainty &

Common problem statement

Given limited resources of wall clock time or HPC hours, it is not tractable to simply simulate
all possible model configurations. Therefore, the question is how to best use the available
resources to optimally quantify the uncertainties?

Forward UQ ~ Uncertainty propagation

Input Model Output
Probability —— Computationally — Distributions of
distributions expensive model model

of code parameters 6 | <= y =1(6, ®, &) == predictions y

Inverse UQ ~ Parameter calibration
+ Forward UQ is typically needed for addressing the confidence interval for a model prediction:
Given the input & code uncertainties, how likely it is that the prediction falls within the
tolerance of the system, such as heat load limit on divertor plate?

* Inverse UQ is typically needed for model validation: Is the model able to reproduce
experimental observations with physically valid input parameters?
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The inverse mapping for 8 is defined only implicitly through the /A
forward model =

Computationally expensive
model y = (0, @, &)

e —~—

* With computationally expensive numerical models:

» Given 0,y can be computed with the forward model (potentially
including a stochastic term)

» Given y, there is no direct computational model to determine 6

» We will use Bayesian inference to establish probability
distributions for 0, given samples of (0, y)
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Bayesian inference (BIl) algorithms provide a principled approach to quantify (A
the uncertainty for the state of the investigated system, given available data &/

Prior belief

State of high uncertainty

/ m(8) \

Aaro Jarvinen | IAEA Workshop on Al for Accelerating Fusion and Plasma Science | 29.11.2023 | Page 8

Likelihood

-
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Plasma current (MA)
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Bayesian inference (BIl) algorithms provide a principled approach to quantify (A

the uncertainty for the state of the investigated system, given available data

L )
‘E\E’#‘b

Likelihood

Prior belief Posterior belief

f P(D|6) \
Measured data D

7(0) N ( 1(8|D) o P(D|9)n(9)\

k second order derivatives easily, and the optimization challenge is expected to be non-convex /

Typically the likelihood is not available in closed-form when operating with complicated models\

Approximate Bayesian Computation (ABC) or likelihood-free techniques are a way to address

these intractable likelihood problems [J.M. Marin, et al. Statistics and Computing 2012 and references
therein, https://doi.org/10.1007/s11222-011-9288-2]

With computationally expensive models, data-efficiency is key to complete the Bayesian
inference task with acceptable overall computational resources — How to efficiently find the
combinations of input parameters that best reproduce the experimental observations?

The forward model is often expensive, not necessarily bijective, does not provide first or
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Bayesian optimization is a class of optimization methods focused on

s
finding a global optimum of a forward model within a search space &
Bayesian Inference Bayesian Optimization (BO)
ﬁstablish a posterior distribution for \ / Conduct Bayesian Inference in the\
uncertain parameters, given evidence space of objective functions to data-
m(6|D) efficiently find the global optimum
(0|D) < P(D]0)7(6) = ontae

\_ AN

[ The ability to optimize expensive ”black-box” functions without access to derivatives makes ]

BO very powerful.
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A Bayesian optimization algorithm has two main components (@)

1. A probabilistic (surrogate) model of the objective function

2. An acquisition function

Steps of a Bayesian optimization algorithm

4 N

Apply acquisition
function to get the
next sample point:

- J

gy

)

-~

Sample the

N

objective function:

-

y; = f(X;)

J

)

4 )

Augment the data
set:

{(X1, Yi)seees (X5 Y3}

Update the

surrogate model
g : J
A

See, e.g. [E. Brochu et al. arXiv:1012.2599 https://arxiv.org/abs//1012.2599]
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1D Bayesian optimization example — Find the minimum

0 samples
2
1+ =]
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N

1D Bayesian optimization example — Find the minimum i
Gaussian process regression as
5 samples T
5 probabilistic surrogate model
x Data ) )
—— E{?:fri]dence samples N Convem_eqt non-pargmetrlc
14 —>

GPR I probabilistic regression when

the amount of data is limited

‘ i « ’Learn’ model hyperparameters
i from data — gradient based
i optimization of marginal log-
| likelihood or through integration
," over the model
i hyperparameters (e.g. MCMC)

‘ground truth’

0 20 40 60 80 100
More about GPR: Rasmussen, MIT Press 2006 X

Gaussian Processes for Machine Learning: Book webpage
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http://gaussianprocess.org/gpml/

o

Gaussian process regression as

1D Bayesian optimization example — Find the minimum
probabilistic surrogate model

5 samples
‘ x Data ) )
—— Mean samples e Conver]l_er!t non-pargmetrlc
GPR -7 probabilistic regression when
the amount of data is limited

‘Learn’ model hyperparameters
from data — gradient based

optimization of marginal log-
likelihood or through integration

over the model
hyperparameters (e.g. MCMC)

14 Confidence
‘// "F-Hconfldence ,‘f

T ~\ /

LY ;

GPR mean i

'I'

]

!

_2 -
- fidence bound /
Lower confidence boun \ e .
o , * : Acquisition function uses the GPR
acquisition ground truth _
-4 - mean and confidence to
: : : recommend new query points
0 20 40 60 80 100
More about GPR: Rasmussen, MIT Press 2006 X
Gaussian Processes for Machine Learning: Book webpage
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1D Bayesian optimization example — Find the minimum i
Gaussian process regression as
15 samples T
5 probabilistic surrogate model
x Data
—— Mean « Convenient non-parametric

Confidence

probabilistic regression when
the amount of data is limited

» ’Learn’ model hyperparameters
from data — gradient based
optimization of marginal log-
likelihood or through integration
over the model
hyperparameters (e.g. MCMC)

Lower confidence bound

- Acquisition function uses the GPR
acquisition

mean and confidence to

. . . . recommend new query points
0 20 40 60 80 100

More about GPR: Rasmussen, MIT Press 2006 X
Gaussian Processes for Machine Learning: Book webpage
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1D Bayesian optimization example — Find the minimum i

25 samples
2

® Data
= Mean
14 Confidence

Lower confidence bound

acquisition
_4 .
0 2.0 4ID 6.0 alo 100
More about GPR: Rasmussen, MIT Press 2006 X

Gaussian Processes for Machine Learning: Book webpage

Gaussian process regression as
probabilistic surrogate model

Convenient non-parametric
probabilistic regression when
the amount of data is limited

‘Learn’ model hyperparameters
from data — gradient based
optimization of marginal log-
likelihood or through integration
over the model
hyperparameters (e.g. MCMC)

Acquisition function uses the GPR
mean and confidence to
recommend new query points
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1D Bayesian optimization example — Find the minimum i
Gaussian process regression as
35 samples T
5 probabilistic surrogate model
x Data
—— Mean « Convenient non-parametric
14 Confidence

probabilistic regression when
the amount of data is limited

» ’Learn’ model hyperparameters
from data — gradient based
optimization of marginal log-
likelihood or through integration
over the model
hyperparameters (e.g. MCMC)

Lower confidence bound

- Acquisition function uses the GPR
aCC]UISItIOI’l .
—4 mean and confidence to

. . . . recommend new query points
0 20 40 60 80 100

More about GPR: Rasmussen, MIT Press 2006 X
Gaussian Processes for Machine Learning: Book webpage
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Bayesian optimization in a challenging multimodal landscape &

Goal: Find maximum of f(x,y)

® Consider an analytical 2D function
with 3 Gaussian peaks and an
underlying slope as ground truth

X 100
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Bayesian optimization in a challenging multimodal landscape (f_j)

Goal: Find maximum of f(x,y)

® Consider an analytical 2D function
with 3 Gaussian peaks and an
underlying slope as ground truth

Following the gradient of the
landscape is most likely to lead to the
second best peak

X 100 ©
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Bayesian optimization in a challenging multimodal landscape (@)

Goal: Find maximum of f(x,y)

® Consider an analytical 2D function
with 3 Gaussian peaks and an
underlying slope as ground truth

Following the gradient of the
landscape is most likely to lead to the
second best peak

In order to find the global optimum,
the algorithm must explore in region
that looks not attractive at first

X 100
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Bayesian optimization in a challenging multimodal landscape {f?,‘)

=

500 samples

100 4 Data

80 N

60

20 A

100 O gy : > 4

X 0 20 40 60 80 100

With a simple BO setup, the algorithm stops exploration
too early and converges to the second best optimum

« GP with Rational Quadratic kernel

After 500 samples, no sample near the global optimum . Upper Confidence Bound Acquisition

This would be difficult to diagnose in higher
dimensionality search space
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Bayesian optimization in a challenging multimodal landscape (f_j)

200 samples

gl Data

80 4

1
5 f(X, y) 60

20 A

0
20
40

60 ; ; i . . ;
X 80 100 0 0 20 40 60 80 100

X

A trivial way to add exploration is to throw in random
samples (not necessarily optimal strategy)

Several ways to encourage exploration exist through
designs of the acquisition functions and surrogate
models

» GP with Rational Quadratic kernel
» Upper Confidence Bound Acquisition
+ 50% fully random samples

J
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Batch BO needed for many practical BO application in model /AN
validation exercises

Many numerical models in fusion energy research consume several hours or days of
wall clock time per simulation — collecting a few 100 samples could take years

To populate the search space within an acceptable wall clock time, samples need to
be collected in batch parallel to each other — a batch BO approach is needed

In Batch BO, a batch of search points is queried at once from the acquisition function

Batch acquisition functions can be categorized as*:

Value-estimators: use a value function g(x) to predict a place-holder value while waiting for the sample
Explorers: use sequential acquisition for the initial point and fill rest of the batch with exploration
Stochastic: Draw a stochastic sample rather than just optimum from the acquisition function
Penalizers: Apply penalty to sample points too close to each other

Mode-finders: Acquire samples in the modes

VVVVVYY

Others: Any other strategy

* N. Hunt, MSc Thesis, 'Batch Bayesian Optimization’, MIT 2020
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It is quite common for the simulations to fail to converge with some =
parameter configurations =
(Dealing with sample failure is not trivial: h

« Ignoring failed samples is likely to lead to acquisition function recommending sampling
the failure region again — inefficient

 Representing a failed sample with a place-holder value that is far from optimal
\_ introduces a discontinuity in the data that is challenging for the probabilistic surrogate )

/Chakrabarty, et al. IEEE Press 2021 https://doi.org/10.1109/SMC52423.2021.9658893 \
introduced a relatively elegant approach in the paper ’Simulation Failure Robust Bayesian
Optimization for Estimating Black-Box Model Parameters’, which adds a failure probability
classifier

1. A failure classifier model to estimate the likelihood of success & failure
2. Surrogate model for the objective function (as in standard BO)

Q. An acquisition function that incorporates the failure probability into the BO framework/
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A portfolio of Bl and BO tasks pursued in close connection to the /AN
EUROfusion Advanced Computing Hub (05) in Finland A

/~ DREAM runaway electron simulations\ /Valldatlon of mtegrared modelllng N\
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See PiAl seminar October 24, 2022
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Bayesian optimization explored for current quench simulations for
a JET plasma with an induced RE beam [reuxPRL 2021]

® Argon massive gas injection 25.4 ms before
the current spike

® CQ simulated with DREAM [Hoppe CPC
2021] using fluid model for REs

> Instant thermal quench assumed with post TQ
T, as an input parameter

> RE seed profile given as input

> Amount of injected argon known, but the
fraction that is assimilated is an uncertain input
parameter

> Characteristic wall time (wall conductivity)
given as an uncertain input parameter

Published in A.E. Jarvinen, et al.
Journal of Plasma Physics 88 (2022) 905880612
https://doi.org/10.1017/50022377822001210
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Bayesian approach for validation of runaway
electron simulations
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(Received | August 2022; revised 11 November 2022; accepted 14 November 2022)

Plasma-terminating disruptions in future fusion reactors may result in conversion of the
initial current to a relativistic runaway electron beam. Validated predictive tools are
required to optimise the scenarios and mitigation actuators to avoid the excessive damage
that can be caused by such events. Many of the simulation tools applied in fusion energy
research require the user to specify input parameters that are not constrained by the
available experimental information. The conventional approach, where an expert modeller
calibrates these input parameters based on domain knowledge, is prone to lead to an
intractable validation challenge without systematic uncertainty quantification. Bayesian
inference algorithms offer a promising alternative approach that naturally includes
uncertainty quantification and is less subject to user bias in choosing the input parameters.
The main challenge in using these methods is the computational cost of simulating
enough samples to construct the posterior distributions for the uncertain input parameters.
This challenge can be overcome by combining probabilistic surrogate modelling, such as
Gaussian process regression, with Bayesian optimisation, which can reduce the number
of required simulations by several orders of magnitude. Here, we implement this type of
Bayesian optimisation framework for a model for analysis of disruption runaway electrons,
and explore for simulations of current quench in a JET plasma discharge with an argon
induced disruption. We use this proof-of-principle framework to explore the optimum
input parameters with uncertainties in optimisation tasks ranging from one to seven

N
({4

)
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Bayesian optimization explored for current quench simulations for /AN

n n “\ /"
a JET plasma with an induced RE beam [Reux PRL 2021] A
® Argon massive gas injection 25.4 ms before
the current spike JET #95135
° : .
CQ S|mu_lated Wlth DREAM [Hoppe CPC 14-
2021] using fluid model for REs ~J
> Instant th_ermal guench assumed with post TQ 1.2 - Current quench
T, as an input parameter
> RE seed profile given as input ”g‘ 1.0 -
> Amount of injected argon known, but the =
fraction that is assimilated is an uncertain input £ 0.8
parameter !
m
> Characteristic wall time (wall conductivity) E 0.6 1
given as an uncertain input parameter &
0.4 -
024 RE plateau
0.0 T T T
Published in A.E. Jarvinen, et al. 0 20 0 60 80

Time after the current spike (ms)

Journal of Plasma Physics 88 (2022) 905880612

https://doi.org/10.1017/S0022377822001210
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1D Example: Find the post thermal quench T, that minimizes the discrepancy (A
between the measured and predicted I, during the current quench &

Evaluate the discrepancy as L,-norm

Simple prior P(T,) = U(1.0, 20) between the measured and predicted |
10 1.4 Ei
(3] |
P(Te) 12 :
. I
087 JET #95135 |
< 1.0 i
s !
z %] 5 o8 :
: i
Q o 1
£ o4l : 0.6 DREAM |
© 1
3 0.4- i
1
1
027 0.2 i
:

0.0 . —l .
0.0 0 10 20 30 40

0.0 25 50 75 10.0 12,5 15.0 17.5 20.0

Temperature (eV) Time after the plasma current peak (ms)

« Bayesian Optimization of Likelihood-Free Inference (BOLFI) method of Engine for Likelihood-Free
Inference (ELFI) Python software package is used [Lintusaari, JMLR, 2018 & Gutmann, JMLR, 2016]
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1D proof-of-principl (@)
proof-of-principle ®
21 . :
GPR 95% confidence interval DREAM simulations . .
GPR mean « Gaussian process provides a sample-
> . . ape . .
g 2 efficient probabilistic regression
=3
@
E 191
E Acquisition function
.E \
_gl’ 134 Next sample
3 samples 6 samples
17
21
>
§ 204
g + Rational quadratic kernel
S 4o used in the GPR
£ » Lower confidence bound
% 1ol acquisition function
- M fAR : 15 %,.Twa” =5 ms,
9 samples 12 samples Radially uniform RE seed
7% 5 10 15 200 5 10 15 20 distribution
Temperature (eV) Temperature (eV)
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Temperature (eV)

1D proof-of-principle

20
Unnormalized posterior
95% confidence interval
A
157 ;. e--e
[ ] \
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10+ \
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posterior b~
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./
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Plasma current (MA)

=7
1.4- i
1
1
1
1.2 '
|
1.04 JET #95135 |
i
1
0.8 !
1
0.6 DREAM
T ~584eV
0.4
1
1
0.2 i
! (c)
0.0 : — ; .
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Time after the plasma current peak (ms)
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Extending the search space to 5 dimensions ®
=7

10 randomly sampled RE seed profiles

® Uniform 5D search space

» RE seed parameterized as gamma \ .
distribution pdf with a, B as inputs

e
T, (eV) 1.0 20 H
Q
far (%) 0.001 100 &
14
In(Twall (ms)) 0 7
a, B 0.001 10

00 01 02 03 04 05 06
Minor radius (m)
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Clear optima are found for T,and T, in the 5D search space

21

n
o

Logarithmic discrepancy
- -
© ©

=
-

=
290 samples
XL ® Global optimumat T~ 6 eV,
v 4 :;.:--',' Tya ~ 3 MS
PR ®* Local optimumat T ~ 16 eV,
CARS
i‘ﬁ. Tyar > 50 Ms
@ * RandMaxVar stochastic
5 10 . ags -
empereture (eV) acquisition function used
* v e P [M. Jarvenpaa et al. Bayesian
g »0 ..d:-‘:}'..:':...... .!‘0. O‘:: i l.: "...\::.. .. '::' ::;. .:.: AnaIyS|S 2019]
e oL _.,.;; e _,.".": AT AR ®*  Number of parallel samples
R A Rt R N AIEL B > 2 VI PR XS :
: ", ,,"q?'.-: .,:.:;; : | ¥R .p.:' '; o ;::. is 10
oL@ (e)
0 2 4 o 6 8 10 0 2 4 8 6 8 10
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Clearly a better fit to the experimentally measured current evolution =
IS obtained with the 5D optimisation L

Plasma current (MA)
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Extending the search space to allow parameterized variation of electron temperature, zs,

~

. . . . )}
the algorithm is able to match the evolution of the plasma current quite well &/
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Presently the focus of the project is to use the framework to match the observed (A
synchrotron radiation distribution

100 | JET Pulse number 95135 DREAM + SOFT
@ 8.08s
80 |
60 |
Na) I
40 i/ QD

20 |

0 o

100

(a) « (b) (c) [A.E. Jarvinen, IAEA-FEC 2023]

* Need to model runaway electron velocity distribution and to generate a synthetic synchrotron

emission distribution with an orbit-following code SOFT [Hoppe Nuclear Fusion 2018
https://doi.org/10.1088/1741-4326/aa9abb]

« A forward pass for a single input takes several hours (vs. ~ minute in the previous study with
fluid model for RES)
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Likelihood-free inference to constrain SOL fluid simulations ({
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Abstract

Fluid-based scrape-off layer transport codes, such as UEDGE, are heavily utilized in tokamak
analysis and design, but typically require user-specified anomalous transport coefficients to
match experiments. Determining the uniqueness of these parameters and the uncertainties in
them to match experiments can provide valuable insights to fusion scientists. We leverage recent
work in the area of likelihood-free inference (‘simulation-based inference’) to train a neural
network, which enables accurate statistical inference of the anomalous transport coefficients
given experimental plasma profile input. UEDGE is treated as a black-box simulator and runs
multiple times with anomalous transport coefficients sampled from priors, and the neural
network is trained on these simulations to emulate the posterior. The neural network is trained
as a normalizing flow model for density estimation, allowing it to accurately represent
complicated, high-dimensional distribution functions. With a fixed simulation budget, we
compare a single-round procedure to a multi-round approach that guides the training
simulations toward a specific target observation. We discuss the future possibilities for use of
amortized models, which train on a wide range of simulations and enable fast statistical
inference for results during experiments.

C.S. Furia, R.M. Churchill, Plasma Phys.
Control. Fusion 64 (2022) 104003.
https://doi.org/10.1088/1361-6587/ac828d

78)

\E‘&j

p(8) Simulator

Neural network + Normalizing flow

/ T .
Run simulations Sample
_— _

Xj —

Experimental Data \ T

gl Only care for one target xo7 Repeat

Prior

Figure 2. A visualization of (sequential) neural posterior estimation, based on a graphic created by Gongalves et al [5]. For a given prior,
simulator, and target observation, N simulations will be run based on samples from the prior. The corresponding (#,x) pairs will be used to
train a normalizing flow model based on deep neural networks. This flow can then be sampled from for a particular xp in order to plot the
pdf corresponding to p(f|xo). For the sake of simplicity, 8 is restricted to one dimension in this diagram but in reality will often be
multidimensional. If non-amortized SNPE inference is desired, the process of running simulations and training can be repeated by denoting
p(f|x0) as the proposal distribution to be sampled from instead of the prior.

Use likelihood-free inference to constrain cross-field
transport coefficients in UEDGE simulations: Dy,
Xey, Xip — 3x10 parameters (10 values radially)

Test the Bayesian optimization framework for the
same example UEDGE case
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Aim to infer cross-field transport coefficients that reproduce a /AN

given target profile L

State of high uncertainty Likelihood of S given 6 State of low uncertainty
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Prior: p(0)

" Prediction , f(0)

0.9 1.0 0

Aaro Jarvinen | IAEA Workshop on Al for Accelerating Fusion and Plasma Science | 29.11.2023 | Page 37



Simple 2D example with D1 & X. set as 0.5 m?/s @}
R P _qulg —
; 2.0 |
| < 15f
1 8
1 S1o0¢f
. 0.5 §
1.5 000 o002
D, (m?/s R—Ri., (m)

[A.E. Jarvinen, IAEA-FEC 2023]
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Explore the same (30 dimension) case as Furia and Churchill ®)

Radial Profile of Transport Coefficients

1 10)€) 1
—~ 80
=
E GO
40
(.98 1.00 1.02 1.04 1.06 0.98 1.00 1.02 1.04 106
YN L

C.S. Furia, R.M. Churchill, Plasma Phys.
Control. Fusion 64 (2022) 104003.
https://doi.org/10.1088/1361-6587/ac828d

Aaro Jarvinen | IAEA Workshop on Al for Accelerating Fusion and Plasma Science | 29.11.2023 | Page 39


https://doi.org/10.1088/1361-6587/ac828d

Explore the same (30 dimension) case as Furia and Churchill

Bayesian optimization started
after 200 randomly sampled cases (stochastic
acquisition using Thompson sampling)
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Explore the same (30 Dimension) case as Furia and Churchill

Bayesian optimization started

after 200 randomly sampled cases (stochastic

acquisition using Thompson sampling)
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Collect
data

Simulate

Outlook: From case-based to amortized inference &
LTI T noe oo Training phase Inference phase B
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(a) Case-based inference (b) Globally amortized inference with BayesFlow
Radev et al. IEEE 2022
https://ieeexplore.ieee.org/document/9298920

The previous discussion has focused on conducting BO for a single input-simulation-output
combination starting from scratch for each BO task — Case-based inference

In practice, conducting these searches over variety of experiments and configurations, one ends
up repeating similar tasks

A learning algorithm that is able to generalize and use previous experiences to guide searches
would be very attractive — called amortized inference — this is much like the human brain is
argued t0 operate [Gershman & Goodman, Cognitive Science 2014 https://api.semanticscholar.org/CorpuslD:924780]
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Bayesian inference (Bl) algorithms provide a principled approach to quantify the /AR
uncertainty for the state of the investigated system, given available data &

® These tools hold the potential to significantly reduce the manual work in parameter
calibration when validating computationally demanding models for fusion plasmas

® With computationally expensive models, data-efficiency is key to reduce the overall
CPUh needs — Bayesian optimization (BO) is a way to achieve this — For practical
BO for computationally expensive model calibration: batch acquisition, failure
handling, and means to appropriately balance exploitation-exploration

® A broad portfolio of Bl and BO projects are being conducted in close connection the
EUROfusion Advanced Computing Hub (05) hosted by the University of Helsinki

® Outlook: In future the plan is to investigate the applicability of deep generative
models within the BO workflow to estbalish amortized inference capabilities for

these tasks — See e.g. Radev et al. IEEE Trans Neural Netw Learn Syst. 2022 BayesFlow:
Learning Complex Stochastic Models With Invertible Neural Networks | IEEE Journals & Magazine | IEEE Xplore
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Efficient training sets for surrogate models of
tokamak turbulence with Active Deep Ensembles
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Abstract.

Modekbased plasma scenario development lies at the heart of the design and
operation of future fusion powerplants. Including twbulent transport in integrated
models is essential for delivering a snccessful roadmap towards operation of ITER

and the

m of DEMO-class devices. Given the highly iterative nature of integrated

models, fast machine-learning-based surrogates of turbulent transport are fundamental

to fulfil the pressing need for faster sim
and Hight sim

tions opening up pulse design, optimization,
nt bottleneck is the generation of suitably

or applications. A
large train
prohibitively ex

ets covering a large volume in parameter space, which can be
ve to obtain for higher fidelity codes.

In this work, we propose ADEPT (Active Deep Ex
a physics-informed, two-stage Active Learning strate

this chs Active
Learning queries a given model by means of an acquisition function that identifies
regions where additional data would improve the surrogate model. We provide a
benchmark study using available data from the literature for the QuaLiKiz quasilinear
transport model. We demonstrate quantitatively

the physies-informed nature of
the proposed workflow reduces the need to perform simulations in stable regions of
the paramete

non-physics infc

ce, resulting in significantly improved data efficiency compared to

| appraaches which consider -

n problem over the whole
domain. We show an up to a factor of 20 reduction in
achieve the same performance as random sampling. We then validate the surrogates on
multichannel integrated modelling of ITG-dominated JET scenarios and demonstrate
that they recover the performance of QuaLiKiz to better than 10%. This matches

ining dataset size needed to

https://arxiv.org/pdf/2310.09024.pdf

onnection to active learning ©

* A key challenge in developing machine learning surrogates
for computationally expensive models is to establish the
training set

* Training set of ~million simulations with a model that costs
~CPUh requires about million CPUh

* In active learning, acquisition function is used to recommend
sampling the the full model in parts of the parameter space in
which the surrogate model uncertainty is high

Regressor: gj,ir6

0.981 * This could be seen BO with the
0.97+ objective function to reduce the
0.96- uncertainty globally for the
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Model validation challenge: how to rigorously select the free input /A
N

parameters for the model to best represent the investigated system &

® Usually, a selection of the input parameters are not well constrainted by the available data

® Multidimensional optimization or model calibration is needed to find the most appropriate
combination of input parameters — Leading bottleneck in model validation exercises

Conventional validation workflow

Select the experiment(s) and measurements used in the validation exercise

A

Setup the simulation, grid, and initial conditions to represent the experiment

Setup the uncertain input parameters

Adjust the uncertain

U 2 input parameters to

Run the simulation and compare the measured and synthetic signals calibrate the output

Evaluate remaining discrepancy between the measured and synthetic signals
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Model validation challenge: how to rigorously select the free input /A
parameters for the model to best represent the investigated system

® Usually, a selection of the input parameters are not well constrainted by the available data

® Multidimensional optimization or model calibration is needed to find the most appropriate
combination of input parameters — Leading bottleneck in model validation exercises

/I—Iuman Is subjective and inefficient in completing this task: )
1. Subjective reasoning for trajectory through the search space

2. Poorly quantified uncertainties

\3. Manual input selection and output processing is inefficient )
-

An optimization algorithm to conduct : J ]

this process would be very attractive
.

Aaro Jarvinen | TRANSP workshop | 27.9.2023 | Page 47



)
2,

Some essential parts of simulating a system with a numerical model
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Figure 1 in Wu, et al. Nucl. Eng. Des. 2018
https://doi.org/10.1016/j.nucengdes.2018.06.004
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