
Experiments 11145, 11182, 10514. Top to bottom: Plasma current, radial and vertical centroid positions. 
Dotted black/solid red lines: reconstruction from experiment/prediction. 

www.tokamakenergy.co.uk          ©Tokamak Energy Ltd

A digital twin for plasma dynamics in a tokamak is useful for optimising and validating experimental 
scenario proposals, developing plasma control systems and more. Physics-based modelling of the 
entire tokamak discharge process is challenging due to nonlinear, multi-scale, multi-physics 
characteristics of the tokamak and demands time from a diverse team of experts as well as 
computational resources to achieve high-fidelity simulations. Furthermore, simulation-time of physics-
based models is prohibitively long for some application types. These challenges invite the use of 
machine learning (ML) as a complimentary tool for developing a fast and accurate digital twin. 

Poster Summary:
• A hybrid ML/physics-based digital twin for plasma dynamics in ST40 spherical tokamak [1].
• Long-Short Term Memory (LSTM) [2] recurrent neural networks are used for time-series predictions.
• ST40 specifics that guided the choice of the digital twin architecture are discussed.
• It is shown that the digital twin can automatically recognise and reproduce:

• plasmaless ST40 operation,
• merging-compression plasma startup [3-5],
• plasma flattop dynamics and transition to vertical displacement event,
• some types of disruptions.

Recurrent neural network-based digital twin of ST40 tokamak 
dynamics: building system insight into model architecture
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• Slow ramp up of Poloidal Field (PF) coil currents
• Plasma startup due to Merging Compression (MC & PSH) coil current ramps
• Plasma flattop dynamics
• Controlled plasma current ramp down
• Often there are partial/full disruptions: Loss of control, plasma touching walls, impurity influx

Typical plasma pulse dynamics

Experiments 10816, 10747, 10812. Top to bottom: Plasma current, radial and vertical centroid positions. 
Dotted/solid lines: reconstruction from experiment/prediction.
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The ST40 high-field spherical tokamak

Proof-of-principle Digital Twin has been demonstrated. Three main avenues of further work:
1.  Include more physics in the Digital Twin
2.  Improve accuracy of predictions
3.  Deploy applications based on the Digital Twin

1. Including more physics:
• Extend inputs/outputs with neutral beam and H-alpha emission. Hence:
• Simulate dynamics of L-H and H-L transitions
• Simulate actuation effect on plasma current, radial position and other properties

2. Improving accuracy – address corrupted NN training data due to sensors’ damage:
• A subset of sensors got perturbed and damaged during campaign, modifying their response
• Hence NN training data is corrupted
• Devise strategy to deal with corrupted training data and retrain the model

3. Applications:
• Experimental inputs validation
• Plasma Control System test platform
• Inter-pulse fast scenario optimisation

• Inputs – Plasma Control System (PCS) actuator and control signals:
• Poloidal Field (PF) coil voltage requests
• Merging Compression (MC) circuit PSU pre-charge voltages and digital trigger signals
• Toroidal Field (TF) coil target current and power supply digital trigger signal

• Outputs – magnetic sensor signals: flux loops, poloidal-plane B-field (Bp) probes, Rogowski coils
• Digital Twin is comprised of a collection of smaller physics- and ML-based models:

Top-left: experimental MC & PSH 
currents (at ITF = 150kA)

Top-right: plasma current

Bottom left to right: plasma radial
and vertical centroid position 

Dotted/solid lines: reconstruction
from experiment (ground truth ‘GT’)/
prediction (ML)

• Data: 2023 Feb – Sep. campaign plasma pulses subset without neutral beams (185 pulses)
• Data are split in 70% : 20% : 10% ratio for train : validate : test subsets (130 : 37 : 18 pulses)
• Simplifying assumptions: 

• coil currents and magnetic measurements fully characterise plasma dynamics
• other conditions affecting plasma dynamics are assumed “constant” and excluded from training 

data, e.g. gas valve waveforms and plasma density, wall conditioning info
• The Neural Network (NN) at the core of Digital Twin outputs raw magnetic sensor signals
• Reconstructed plasma info, e.g. current, centroid position, last closed flux surface – are not part of 

model outputs or learning cost function.
• All presented NN results are for test set pulses (pulses unseen during model training)

Digital Twin model structure

Conclusions and Future work

Digital Twin training procedure
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Parameter Range

Bt [T] 1.5 – 2.2

Ip [MA] 0.4 – 0.8

RGeo [cm] 40 – 50

A = R/a 1.6 – 1.8

PNB, ENB [MW, keV] 0.8, 24; 1.0, 55

Pulse duration [ms] ~200

Magnetic Sensors:
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Digital Twin – a composite hybrid physics/ML model

NN exhibits some disruptions
10816 10747 10812
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NN plasma flattop dynamics and transition 
to vertical displacement event

(11122: 
no MC – no plasma)

NN merging-compression startup

(1) Actuator Signals (2) ST40 coil currents (3) Magnetic measurements (4) Plasma reconstruction10513
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