Self-consistent time series tracking for phase difference
and improved density profile reconstruction scheme
on the KSTAR reflectometer
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Introduction Method

* Frequency modulation Sequential decoding

“* KSTAR FMCW reflectometer n p-sweeping = Viterbi algorithm [4]

f dulated conti [GHz] Downsweeping The Viterbi algorithm (VA) estimates the
frequeney-motulelsd continuos wavel argmaxyes p(y 1, Y2 - VN ) maximum likelihood of the state

for density profile measurement
yP Loss (or penalty) ~ log-probability sequence of the Markov model.
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fo% —— argmineg L(yl, Vo e yN) Variants of VA are commonly used in
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S« From each plasma cutoff layer, continuous communications, sp.eech recognition,
part-of-speech tagging, and also IF

waves with swept frequency are reflected, | . .
and the phase difference (detected at IF mixer) OCCUTS. tracking of micro-doppler signals [5,6].
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Receiver * KSTAR X-mode reflectometer (3 sweeping bands) "oy K
f d | e\ (A e "\ iR L(yi, V5 ... YN)
can covers from edge to core plasma. - : N-1 Self-consistency loss
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Q-band: 32-48 GHz, V-band: 48-72 GHz, and W-band: 72-108 GHz o] = Cg4, Z 1A, U Vne1) — BDdr (W, V)|
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FMCW reflectometer (like a radar)

Cc.*a\'a"»f:nr.t:.*tf’:::un\A ¢ HOWEVGI’, in real'eXperimentS; Magnitude penalty
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post-processing dedicated post-processing + ¢ z f(n)  : smaller at strong mag.
Chop and reshape =0

(data preparation) | A _ techniques are necessary. N-1
Enhanced Phase retrieval

Time-frequency and tracking & o T Cg, z |¥n — Yn+1l  Pathlength
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lvsis [2 [This poster, :
anatysts [ ] D.K. Oh’s poster @ Thu.] Den5|ty

L\ o distribution Auto-term (emission): f (NxM)

f (Inversion Results Cross-term (transition) : g (N-1xMxM)
= algorithm)

The refractive index (1, ) = J1 - (“;”)2 (w(z“i:%“’_%a))g) - Gaussian white noises
S - random chirping

The phase difference A¢p = % f:;OMT udr ) 11 - double components (AM)

en) - B0 e | with a crossing
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] w-pu(r,w)

p Me€, m,

Area =§wn+1u(wn+1,rn) x Ar v Problems in raw signals ) i) e Even with very low SNR data,
| : VA recovered well-connected

lines without consideration

> ngh noise (but density fluctuation actually happen!)

e Tr Multi-component signal (left hand cutoff, clutters, etc.) .
Incident wave with sweeping AM-FM . Cr = 0, Cgl 3 10Cg2 of magnltUde'
(Amplitude modulated, frequency modulated) ! 2 : 6 : but remains crossing region

» ZC (Zero-crossing) and unsplit components.
- Real FMCW reflectometer data
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-> Signal processing and ML (possibly) techniques

———— * Inreal Q-band signals, it

S sy reconstructed more likely
s signals after pre-parameter
optimization.
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Time-Frequency Analysis
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.  Under VA contexts,
** Wavelet Transform (WT) [3] the advance of sequence

* For the accurate analysis of instantaneous o 4 / tracking is expected by more

frequency (IF), wavelet transform is ) physically explainable
introduced. 0 consideration.

e.g. additional penalty terms
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* Wavelet transform is better for analyzing
tempolarily localized frequency variations £~

(cf. STFT) with a fast sampling rate (100GHz). . . -
. Extension to ML techniques (planned)
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*“* Self-consistent phase difference Time = linear sweeping of incident frequency (GHz) Combination with the Bayesian mixture model (D.K. Oh@ Thu, poster) can

1) App = arg(z z;41) * Given the tracked path in a CWT, suppress the fault in crossing regions and overlapped multi-components.

, - 2n(fy + frg) o one can calculate the phase difference
) Adp = 5 At in two ways.
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T 30 time (us)

z(t, f) = Ae'® (complex WT, CWT)

Sequential machine learning models (RNN or LSTM) can be applied if there exist
enough training datasets.

Additional frequency signal (Amplitude: x1.2) IS | q 17 ] Seg2seq and Attention have also applicability with full time-frequency domain
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In the penalty used here, density reconstruction is more automatic and faster
by reinforcement learning without supervised density profiles.
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* Viterbi algorithm with self-consistency of phase information made good paths in high noise
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