Higher Fidelity Surrogate Models for Gyrokinetic Simulations
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Integrated Modelling Improve on existing Gyrokinetic Al Surrogates [1,2]
* Simulates plasma profile evolution and resulting transport on confinement timescales. * Train on higher fidelity Linear GKW [3] simulations instead of QuaLiKiz (QLK) [4]
« Uses: Tokamak Design and ITER Scenario Simulations « GKW is electromagnetic as opposed to electrostatic
« |deally need a high volume of accurate simulations. « GKW uses arbitrary magnetic geometry as opposed to circular flux

« Bottlenecked by gyrokinetic simulations used to calculate fluxes which need to run surfaces

~10% times per second of plasma for integrated modelling « However significantly increased runtime per simulation

 Smaller training set (~100,000 vs 256M) with limited computation time

Gyrokinetic Models — Flux Tube &f * Train on linear simulations to allow for experimentation of saturation models
+ Solve Fokker-Planck and Maxwell equations, integrating over the gyro-motion of » Train on Integrated Modelling and Analysis Suite (IMAS) [5] normalised data

particles to reduce dimensionality « Test and compare different kinds of machine learning processes for stability
« Inputs: gradients (Temperature, Density, Pressure, etc) classification and linear response regression
« Outputs: fluxes (particle, heat, momentum, etc) » Decision Trees (XGBoost [6], this poster)
 Even the fastest reduced models (quasi-linear) are too slow for real-time integrated * Neural Networks (NNs)

modelling  (Gaussian Processes

« Can Al surrogate models trained on existing simulation results act as a reliable
substitute for running new simulations?
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« Training Dataset: 8D Hyper-rectangle (before conversion to IMAS) of 256M QLK Linear GKW simulations will be generated with more inputs available than were used for the
Simulations covering a wide domain of the parameter space to reduce interpolation. existing QLK dataset
* Trained using XGBoost Decision Tree ensembles (up to 25 depth and 512 trees) « How is the model scaling affected when an input is fixed?
« How does our model accuracy scale with number of training samples? * Which inputs are the most relevant for the stability decision tree?
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* High baseline accuracy at low amounts of training points (90% with only 1000 points). « Top left: built-in average “information gain” when using a given input to split the data
« Excellent scaling to almost 100% accuracy when training with 80% of the dataset « Top right: precision gain from fixing a given variable and training new models on
(200M points). subsets of the resulting data slice
« Good accuracy even with lower numbers of trees and reduced depth. « Bottom left: the resulting quantified “importance” of the variables from these results
« Roughly linear increase in training time and prediction time with number of samples. averaged at the 0.95 and 0.975 accuracy thresholds (dashed lines from top right plot)
« Extremely fast prediction time on the order of 10°s « Built-in methods of XGBoost to classify variable importance not sufficient

« Bottom right: scaling of fixing multiple slices to further reduce dimensions
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« Train NN to predict growth rates and frequencies based on IMAS normalised QLK data
 Cenerate database of GKW simulations and apply XGBoost and NN pipelines
« Compare performance of different Al models trained on the same data
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