

# IAEA Workshop on Al for Accelerating Fusion and Plasma Science

November 28, 2023 to December 1, 2023 IAEA Headquarters

## **Workshop Logistics**



- Each day "intro to session" talk  $\rightarrow$  present the summary slides from invited speakers of the day.
- Discussion sessions:
  - Expand on the presented topics, highlight open questions, reconnect to CRP use cases where possible
  - Bring up critical issues for data-centric community, e.g. data generation / access / sharing, open and FAIR research etc...

IAEA Workshop on AI for Accelerating Fusion and Plasma Science, 2023 11/28 – 12/1

# What is a CRP

#### **Coordinated Research Project:**

Representatives from 15-20 institutes worldwide IAEA - sponsoring and coordinating body

**Duration** 

4–5 years (AI4Fusion is 5 years) Coordination Meetings (~every 6–12 months) at IAEA's expenses

**Financial Support** 

Research, technical and doctoral contracts get financial support per annum per contract

Research agreements are cost free agreements



Platform: https://nucleus.iaea.org/ sites/ai4atoms/ai4fusion

> Nucleus account needed

### Roadmap



IAEA Workshop on AI for Accelerating Fusion and Plasma Science, 2023 11/28 – 12/1

## AI4F Working Structure (2022-2027)

Management and Coordination Team

#### AI4F participants

#### AI4F observers

- Australia (The Australian National University)
- China (HUST, ASIPP, Shanghai Jiao Tong University, SWIP)
- Germany (IPP)
- India (IPR)
- Italy (ENI, University of Cagliari)
- Japan (NIFS, Osaka University)
- Rep. of Korea (KFE)
- Sweden (Chalmers)
- Switzerland (EPFL)
- **UK** (UKAEA, Imperial College London, First Light Fusion)
- USA (GA, MIT-PSFC, PPPL, University of Notre Dame, UW-Madison, W&M)



International
 Telecommunication
 Union (ITU)



NACA - Research Contracts Administration Section



#### Real-time MFE System Behaviour Prediction, Identification & Optimization Using ML/AI Methods

 To accelerate fusion R&D by establishing a multi-machine database of experimental and simulation MFE data (adhering to FAIR/Open Science principles) for ML/AI-driven applications, and through increased access to knowledge and information of ML/AI methods for MFE.



### IFE Physics Understanding through Simulation, Theory and Experiment Using ML/AI Methods

 To accelerate fusion R&D by establishing a database of experimental and simulation IFE data (adhering to FAIR/Open Science principles) for ML/AI-driven applications, and through increased access to knowledge and information of ML/AI methods for IFE.



# Feasibility of MFE and IFE Image Database

 To determine the feasibility of an image database from MFE and IFE data (adhering to FAIR/Open Science principles) for ML/AI-driven applications with potential to accelerate fusion R&D.



### **Community Engagement and Workforce Development**

- To accelerate community integration, engagement and capacity building, as well as create and provide with access to knowledge and information in the area of ML/AI methods applied to fusion R&D
- Al for Fusion digital platform.



### **AI4Fusion Use Cases**

| Work Package | Title                                                                                                                                                                                                                                                                                                                                       | AI4F Proposers                                                                  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
| WP3          | Automatic detection of hot spots in the infrared images with NN                                                                                                                                                                                                                                                                             | M. Jakubowski, IPP, Germany                                                     |  |
| WP1+WP4      | An AI for Fusion challenge using C-Mod and J-TEXT data                                                                                                                                                                                                                                                                                      | Z. Wei, HUST, China; C. Rea, MIT, USA; T. Basikolo, ITU                         |  |
| WP2          | An IFE simulation database and an application in Bayesian data assimilation                                                                                                                                                                                                                                                                 | A. Crilly, Imperial College, UK; R. McClarren, University<br>of Notre Dame, USA |  |
| WP1          | Predicting the evolution of plasma parameters according to the<br>present status and scheduled actuators actions based on Al<br>techniques                                                                                                                                                                                                  | Z. Yang, SWIP, China                                                            |  |
| WP1          | <ol> <li>Accurate and quick calculation of plasma position, equilibrium,<br/>instability growth (such as vertical growth) by machine learning.</li> <li>The prediction of disruption caused by various reasons such as<br/>impurity, MARFEE, VDE and others by machine learning.</li> <li>Discharge control by machine learning.</li> </ol> | B. Xiao, ASIPP, China                                                           |  |
| WP1          | A standardization framework for system simulation codes                                                                                                                                                                                                                                                                                     | D. Böckenhoff, IPP, Germany                                                     |  |

### **AI4Fusion Use Cases**

|        | Work Package | Title                                                                                                                                                                                                                                                                                                                                       | AI4F Proposers                                                                  |
|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|        | te dib3      | Automatic detection of hot spots in the infrared images with NN                                                                                                                                                                                                                                                                             | M. Jakubowski, IPP, Germany                                                     |
| comple | WP1+WP4      | An AI for Fusion challenge using C-Mod and J-TEXT data                                                                                                                                                                                                                                                                                      | Z. Wei, HUST, China; C. Rea, MIT, USA; T. Basikolo, ITU                         |
|        | WP2          | An IFE simulation database and an application in Bayesian data<br>assimilation                                                                                                                                                                                                                                                              | A. Crilly, Imperial College, UK; R. McClarren, University<br>of Notre Dame, USA |
|        | WP1          | Predicting the evolution of plasma parameters according to the<br>present status and scheduled actuators actions based on AI<br>techniques                                                                                                                                                                                                  | Z. Yang, SWIP, China                                                            |
|        | WP1          | <ol> <li>Accurate and quick calculation of plasma position, equilibrium,<br/>instability growth (such as vertical growth) by machine learning.</li> <li>The prediction of disruption caused by various reasons such as<br/>impurity, MARFEE, VDE and others by machine learning.</li> <li>Discharge control by machine learning.</li> </ol> | B. Xiao, ASIPP, China                                                           |
|        | WP1          | A standardization framework for system simulation codes                                                                                                                                                                                                                                                                                     | D. Böckenhoff, IPP, Germany                                                     |

## AI4Fusion -ITU Data Challenge

- MIT Plasma Science and Fusion Center (PSFC) + Huazhong University of Science and Technology (HUST) + Southwestern Institute of Physics (SWIP) worked under the IAEA Coordinated Research Project on AI for Fusion to share data and workflows for the "Multi-Machine Disruption Prediction Challenge for Fusion Energy".
  - Data selected from Alcator C-Mod, J-TEXT, and HL-2A
- **ITU** has led the organization of a **data challenge** hosted by the Zindi platform:

https://zindi.africa/competitions/multi-machine-disruption-prediction-challenge

### Finalists to be announced at upcoming webinar on Dec 12:

https://aiforgood.itu.int/event/ai-for-fusion-energy-challenge-finale-multi-machine-disruption-prediction/

#### Al for Fusion Energy Challenge - Al for Good

