International Conference on

The Safety of Radioactive Waste Management, Decommissioning, Environmental Protection and Remediation

6-10 November 2023 Vienna, Austria

HARMONISED BEST PRACTICES, REGULATIONS AND STANDARDS IN WASTE MANAGEMENT AND DECOMMISSIONING

EURATOM HARPERS PROJECT PHASE 1 OVERVIEW

Technical coordinator: reka.szoke@ife.no Coordinator: elke.jacops@sckcen.be

Presentation outline

Short overview
Specific needs that inspired the project
Overall goals, objectives
Expected outcomes & Impacts & Target groups
Project structure
Work plan / Cooperation
Stakeholders engagement in Phase 1
Phase 1 results & next steps

What's next, where to find us?

Response to EURATOM call HORIZON-EURATOM-2021-NRT-01-08:

Towards a harmonised application of the international regulatory framework in waste management and decommissioning

26 partners, 13 countries

- Different national regulations in decommissioning and waste management hinder establishing broader markets for services (e.g., cross-border treatment and processing) → limits job and business growth opportunities.
- Implementation of advanced or breakthrough technologies is slow due to regulatory uncertainties or variations.
- Valuable repository volumes are occupied by wastes which could otherwise be recycled or freely released.
- Risk of negative public perception of the nuclear sector if environmental and sustainability issues regarding waste streams are not handled efficiently.
- **-** (...)

Overall goals & objectives

Establish & clarify the benefits & added value of aligned practices and methodologies in decommissioning and RWM.

Realisation of the aims of the project will contribute to enhance the overall safety & economics of the nuclear sector.

Identify the obstacles & issues preventing implementation of a more common regulatory approach, covering e.g. nuclear, industrial safety, occupational health, environmental, ... aspects.

Expected outcomes / Impacts / Target groups

IMPACTS

Increase number of companies offering international services

Wider deployment of advanced technologies

More effective & efficient decommissioning and RWM

Reduction of radioactive waste into repositories

Implementation of circular economy principles

Faster procurement processes for services

Faster implementation of solutions based on improved public confidence in safety from regulatory harmony.

TARGET GROUPS

Who could use or further up-take the results of the project? Who could benefit from the results of the project?

Waste Owners

Commercial Service Providers

Public, civil society & NGO

MS governmental bodies

EC, policy makers, R&D strategy

Regulatory Authorities

A greater convergence of methodologies and approaches will support international cooperation, will decrease the fragmentation of the European market, therefore will contribute to cross-European mobility of industry & services, shared facilities, acceptance of advanced technologies and encourage implementation of circular economy principles.

Project structure

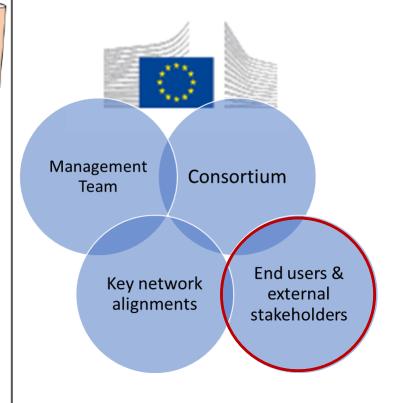
WP1 - Project Management

WP2 - Strategic tasks

stakeholder mapping engagement, survey development and analyses, manage open calls, consolidate business case outcomes

WP3 - Cross Border Services/Facilities

WP4 - Circular Economy

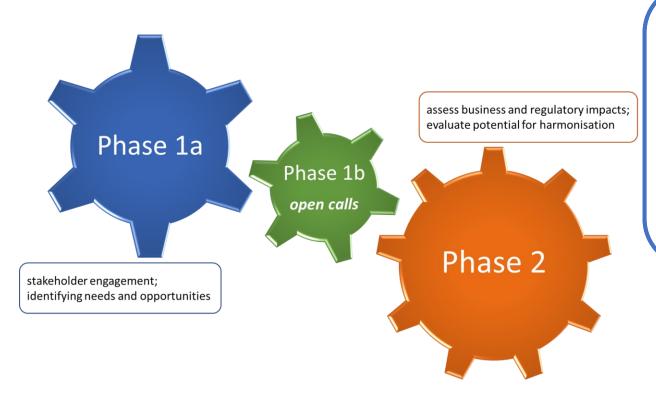

WP5 - Advanced Technologies

- · prioritize needs and opportunities
- · refine and elaborate subthemes
 - · assess regulatory impact
 - · produce business case

WP6 - Regulatory Framework

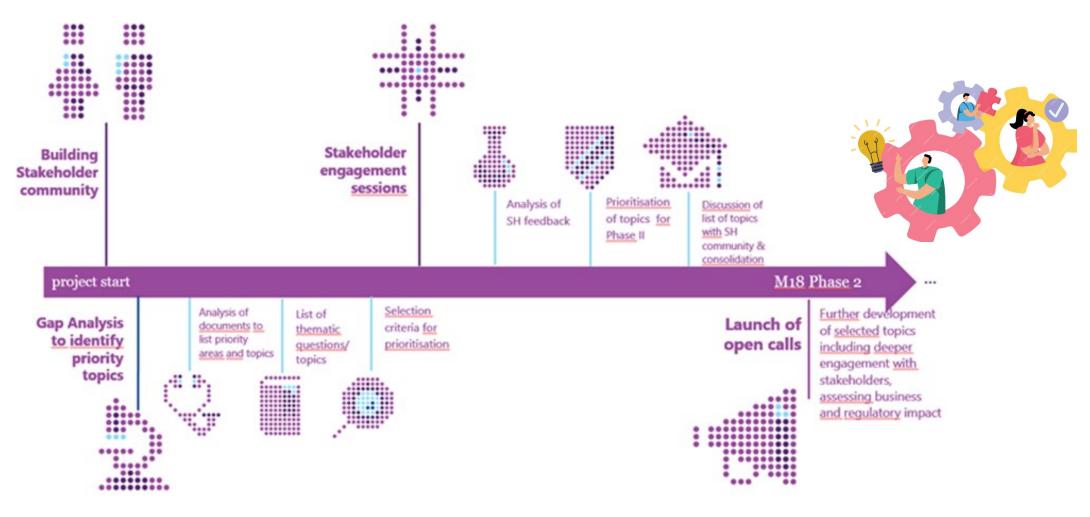
establish regulatory working group, identify relevant regulatory differences, evaluate potential for harmonisation, evaluate strengths, weaknesses, opportunities and threats toward harmonisation

WP7 - Engagement and Dissemination



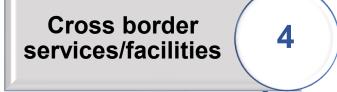
Work plan

HARPERS aims to reinforce the activities of the European Joint Programme EURAD, EURATOM PREDIS and SHARE projects; international cooperation is encouraged.


Phase 1a: establishing a wide MS stakeholder community + associated engagement → define priority areas for Phase 2.

Phase 1b: open calls for expert contributions on defined priority areas, includes possibility for 3rd parties to contribute.

Phase 2: further development of priority topics including deeper engagement with the stakeholder community; assessing business and regulatory impacts.



What was expected from Stakeholders in Phase 1?

Ensure highest prioritisation in project focus and greatest impact of the project outcomes

- Pre-defined list of topics developed within HARPERS project based on the input of the different partners and on the review conducted on the existing literatures (including SRA, position papers, past and on-going projects).
- 2 on-line workshop sessions/WP to discuss & consolidate a list of priority topics to be further analysed during the HARPERS project
- ⇒ The input received during the webinar was further analysed to arrive to a prioritisation of the top 3/4 topics to move from Phase 1 to Phase 2 and to define the work to be performed in the last 2 years of the project.

Circular Economy

Advanced Technologies

The work performed allowed the identification of the top priority areas in a transparent and effective way.

Harmonization

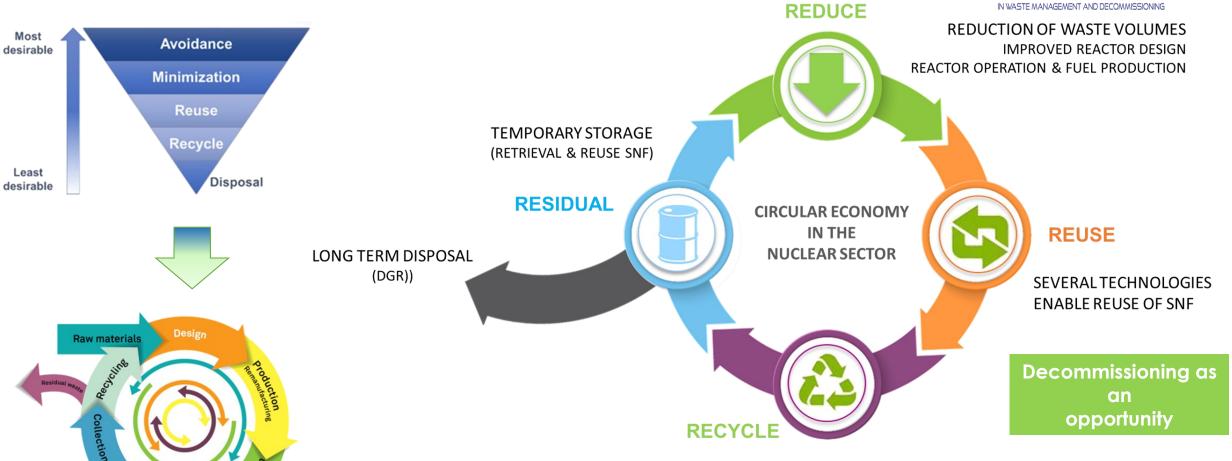
countries problematic waste inventory & treatment

Best Practice

MS different approach to deal with radioactive contaminated hazardous waste

Technical Challenges

Geological Disposal Facility Waste Storage Facilities


WP4 Circular Economy

The **IAEA-CN-318-310 poster** gives a detailed description of workshop results, the Topic Prioritization Process and discusses the top three identified priority areas to be further analyzed in Phase 2.

Circular Economy- Nuclear Sector

* based on nucleareurope

This project has received funding from the Euratom research and training programme 2021-27 under grant agreement No 101060028

CONSTRUCTION MATERIALS, METALS, ...

RECYCLED RADIONUCLIDES FOR SPACE, MEDICAL & OTHERS APPS

Main Categories

Inventory

Common waste/issues for recycling/ harmonised classification to promote circularity

Recycling and reuse

Technologies, Regulatory issues, Safety and ALARA, Economical, Societal

Technologies for material and waste treatment

Mobile system/technologies optimisation

Clearance

Framework for clearance and regulatory discrepancies

Recycling

Design

Optimisation

Environment Waste management

Regulations

Characterisation

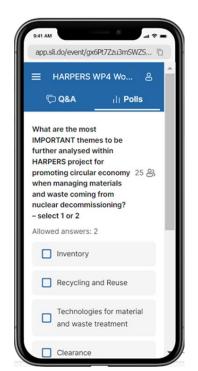
Flexibility on characterisation approaches for clearance

Multi criteria analysis of strategies

Digital tools, decision making approaches

Transversal

KM, Sharing good practices, Stakeholder interaction, Public involvement



WP4 Circular Economy - Workshops output

slido polls to understand stakeholder views on the topics and the main challenges

- Sustainability and waste minimization indicated as main reasons why CE is important for decommissioning and radioactive waste management (RWM)
- Protection of citizens and environment, economic renewal and growth and public trust and confidence as the top 3 drivers for implementing CE in RWM
- Recycling and Reuse and Clearance as the most important topics. No strong expectations were highlighted with regards to Inventory or Characterisation.
- Regulatory discrepancies and regulatory constraints as the main challenges for clearance and material recycling.
- Societal aspects were indicated as a dominant theme and sharing of current/good practices could help in building trust in the recycling of materials

Methodology for prioritisation of topics

Semi-quantitative approach based on:

- ✓ Identification and assignment of Weighting Factors to:
 - Categories
 - Drivers
 - Challenges

Starting from the Workshop outcomes and further consolidated within HARPERS Partners

- ✓ Analysis of the impact of the topics on the top drivers
- Qualitative evaluation of the the top priority topics in terms of Importance, Urgency and Achievability
- ✓ Final identification of the 3 priority topics to be further analysed in Phase 2.

Priority Topics

Priority	Description of the topic	Main challenges	Main needs
1	National Regulations and Criteria for Clearance Analysis of the differences between national regulations and on the release criteria (unconditional and conditional)	Different national regulations and criteria	Identify the advantages and weaknesses of the different national approaches, as well as the points that could be improved in order to optimize the reuse and recycling of waste
2	Benchmarking of Circular Economy Approaches and Technologies Sharing of best practices and information and lessons learned from Circular Economy approaches and technologies already implemented in nuclear and non-nuclear fields	Different approaches/regulations (e.g., for non-nuclear into nuclear)	Support decision makers ability to make strategies and decisions for more sustainable decommissioning and for minimizing waste and recovering and reusing valuable materials
3	Sustainability Assessment Sustainability of the Circular Economy strategy needs to be analyzed in comparison to the linear approach to assess the main benefits and identify the main barriers preventing the implementation of reuse and recycling in nuclear sector	Societal and Economical	An assessment of the economic, environmental and societal benefits can facilitate decision making and promote the use of recycled materials and create or expand the European market for recycled materials

WP5 Advanced Technologies

The **IAEA-CN-318-331 poster** gives a detailed description of workshop results, the Topic Prioritization Process and discusses the top three identified priority areas to be further analyzed in Phase 2.

Waste treatment

Advanced technologies for decontamination, waste treatment and characterisation

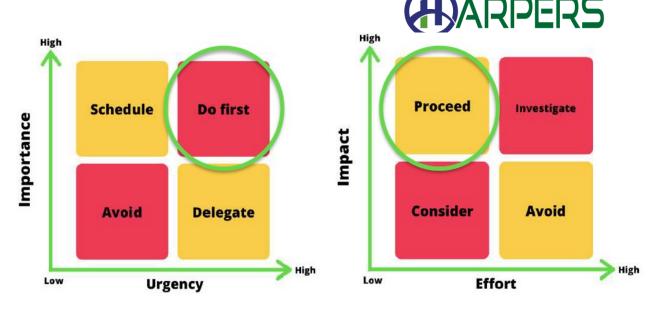
Automation and Robotics

Automation and robotics in decommissioning, decontamination, waste management

Digitalisation

Standardisation, protocols, digital twins, building information management systems, digital architecture, 3D modelling

New technologies for decontamination of buildings and environmental restoration	0	1.9
Adoption of advanced manufacturing techniques including additive manufacturing	0	1.0
New waste treatment and immobilisation technologies	0	1.9
Harmonis ed waste-form as sessment protocols	0	1.2
Remote In-situ characterisation / non contact or non-destructive evaluation	0	0.7
Standards for mobile treatment systems	0	0.6


Adoption of robotics in decommissioning planning, dismantling and waste management – new technology in nuclear environments e.g. (semi) autonomous systems, Ai focused technologies, exoskeletons, wearable technology, augmented reality.	•	2.4
Automation of was te sorting, segregation, sentencing and packaging.	•	1.9
Automation of waste stores, learning from advanced digital logistics practice.	•	1.9
Smart decontamination techniques - targeting contamination through sensing, local decontamination and removal of the hazard from the system.		2.4

	'Standardised' DTw and advanced BIM technology and their application.	0	2.2
	Standardisation of protocols for security of data and data transfer, including cyber security and segregation	0	2.4
	Standardisation of digital architecture and frameworks - common human machine interface (HMI)	0	2.2
	Automation of site mapping – coupling the use of sensors, Geographical Information Systems (GIS) and deployment methods (UAV, land based automated vehicles etc).	0	2.3
า	Standardisation of 3D modelling protocols	0	1.3

This project has received funding from under grant agreement No 101060028

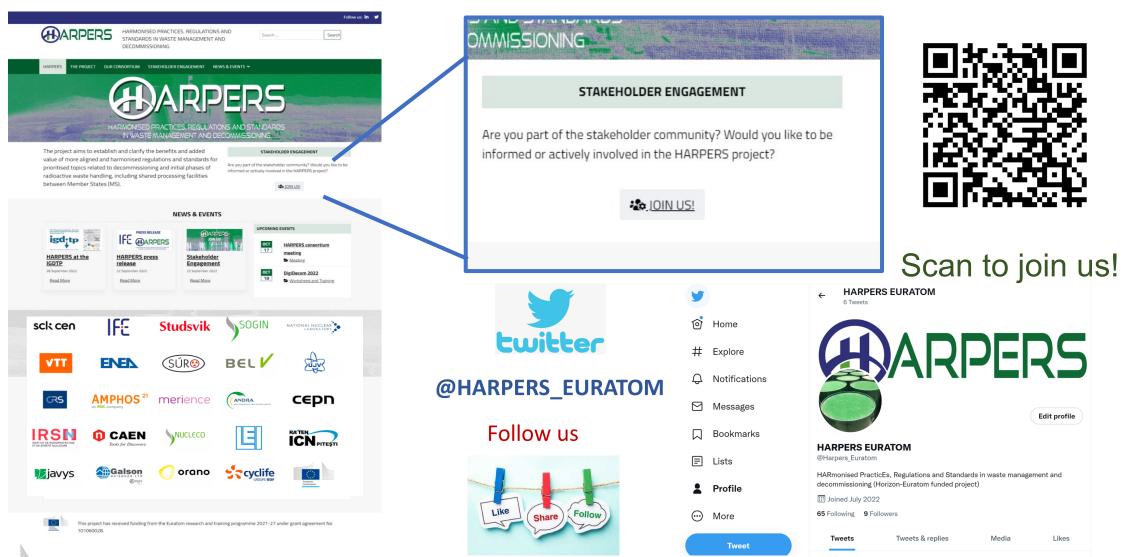
Down-selection: one topic per thematic category

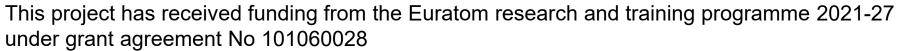
- ✓ Waste Treatment: Standardising approaches to technology assessment and qualification for decontamination, environmental restoration, waste treatment and immobilization
- ✓ **Automation and Robotics**: Standardising protocols and systems to support adoption of robotics and automation in decommissioning, dismantling and waste management
- ✓ **Digitalisation**: Standardising digital twin and advanced Building Information Management (BIM) technology and their application

NEXT step

The selected **topics will be studied in more detail in Phase-2**, by performing deeper engagement with stakeholders and <u>further evaluate issues associated</u> with the topics:

- surveys
- 1 to 1 discussion
- workshops


The **outcome of Phase 2** will be a **series of position papers**, each based on the relevant task data and the detailed feedback from the stakeholders engaged with a series of **recommendations using the TECOP** (technical, economical, commercial, organizational and political) approach.



Stakeholder Engagement - Harpers-h2020

Commission

