

EXPOSURE TO AIRBORNE PARTICULATE MATTER IN THE RADIOACTIVE WASTE STORAGE FACILITY

R. Amellia, J.E. Putri, A.F. Anugrah

National Research and Innovation Agency (BRIN), BJ. Habibie, M.H. Thamrin Street No.8, Central Jakarta, Indonesia ramadhani.amellia12ipa@gmail.com

1. Background

The radioactive waste storage facility in Radioactive Waste Management Installation (RWMI) is closely related to airborne particulate matter. The radioactivity concentration and air contamination level in particulate matter must be analyzed and compared with the required limitation. Monitoring air contamination levels is a commitment based on the Safety Analysis Report (SAR) of RWMI. We must monitor exposure to airborne particulate matter because of the very high potential in our activities, and it's become an important issue to workers' health. Monitoring exposure to airborne particulate matter also needs attention because it has objectives closely related to sustainability and safety, such as protecting human health (safety), preventing environmental impact (safety and sustainability), and measuring regulatory compliance.

2. Introduction

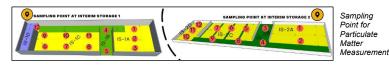
The RWMI is the only radioactive waste management installation in Indonesia. The RWMI carries out various radioactive waste management activities such as solid waste preparation, cementation, direct immobilization, compaction, incineration, evaporation, and ion exchange. The RWMI has several radioactive waste storage facilities, including Interim Storage 1 (IS-1) and Interim Storage 2 (IS-2).

Dust particulates mixed with particulate matter in the air can produce particulate pollutants that can enter the human body through the respiratory system and harm the respiratory system.

Typical Sizes for Common Pollutants and Particles Passing Through the Human Respiratory System

3. Regulation

- Ministry of Manpower Regulation No. 5 of 2018: Occupational Safety and Health in the Work Environment, the Threshold Value (TLV) of respirable particulates can't exceed 2 mg/m³.
- SNI 19-0232-2005: The TLV is a hazard factor standard in the workplace as a
 guideline for control so that workers can still deal with them without causing illness
 or health problems in their daily work for no more than 8 hours a day or 40 hours a
 week.
- ISO 14644-1: 2015: The clean rooms and related controlled environments, especially regarding the classification of air cleanliness based on particle concentration.


ISO 14644-1:2015	Maximum Concentration Limits (Particles/m³)								
Classification Number (N)	0.1	0.2	0.3 µm	0.5	1.0	5			
Classification Number (N)	In the micrometer range								
ISO Class 1	10								
ISO Class 2	100	24	10						
ISO Class 3	1 000	237	102	35					
ISO Class 4	10 000	2 370	1 020	352	83				
ISO Class 5	100 000	23 700	10 200	3 520	832				
ISO Class 6	1 000 000	237 000	102 000	35 200	8 320	298			
ISO Class 7				352 000	83 200	2 930			
ISO Class 8				3 520 000	832 000	29 300			
ISO Class 9				35 200 000	8 320 000	293 000			

 The Safety Analysis Report (SAR) of RWMI, regarding work distribution area and limits of air contamination level in RWMI.

| S-1A | IS-1 storage of unprocessed radioactive waste | S-2A | IS-2 storage of processed waste in IS-2C | IS-2 storage of processed waste in IS-2D | IS-2D | IS-2 storage of processed waste in IS-2D | IS-2D |

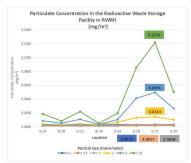
4. Method

Determine the sampling points for particulate matter measurement in IS-1 and IS-2, then operate the particulate counter meter at each sampling point with a height of 150 cm from the floor.

5. Result

5.1. Measurement of the Particulate Amount in the Radioactive Waste Storage Facility of RWMI

No	Location	Particulate Amount (particle/m³)							
		0,3	0,5	. 1	2	5	10		
		(in the micrometer range)							
1	IS-1A	264,815	25,150	3,290	1,123	129	24		
		269,086	25,417	3,337	1,139	132	27		
		269,612	25,498	3,337	1,225	177	47		
	Average	267,838	25,355	3,321	1,162	146	32		
2	IS-1B	266,248	25,286	3,009	903	59	7		
		267,023	25,537	3,118	1,037	105	21		
	Average	266,635	25,412	3,064	970	82	14		
	IS-1C	253,199	229,687	3,356	1,295	222	55		
		260,395	23,763	3,220	1,190	146	31		
		260,228	24,020	3,310	1,218	169	47		
		261,327	23,806	2,964	998	100	22		
		270,803	26,238	3,174	1,015	90	16		
		269,434	26,045	3,142	1,005	80	14		
	Average	262,564	24,473	3194	1,120	135	31		
4	IS-1D	253,248	22,310	2,805	894	71	12		
	Average	253,248	22,310	2,805	894	71	12		
5	IS-2A	291,767	30,330	5,583	2,142	214	42		
		291,291	29,099	4,718	1,797	212	50		
	Average	291,529	29,714	5,150	1,969	213	46		
6	IS-2B	287,395	32,866	8,269	4,140	841	217		
		279,296	28,236	4,917	1,827	188	41		
	Average	283,345	30,551	6,593	2,984	515	129		
	IS-2C	313,186	34,174	7,518	4,041	1,010	309		
		308,102	31,516	5,603	2,592	474	117		
		303,209	36,118	8,865	4537	941	278		
		296,058	34,658	8,518	4,398	973	276		
		296,136	33,775	7,780	3,823	724	188		
	Average	303,338	34,048	7,656	3,878	824	233		
8	IS-2D	292,592	32,615	6,971	3,188	539	127		
		290,993	33,420	7,393	3,169	460	104		
		292,133	32,416	6,909	2,921	417	91		
	Average	291,906	32,817	7,091	3,093	472	107		


Particulate Amount In the Radioactive Waste Storage Facility of RWMI in Semester 1 2023.

The radioactive waste storage facility of RWMI complies with ISO Class 7 classification, with a particle size limit of ≥0.5 micrometer is 352,000.

5.2. Measurement of Particulate Concentration in the Radioactive Waste Storage Facility of RWMI

Particulate Concentration In the Radioactive Waste Storage Facility of RWMI in Semester 1 2023.

The largest particulate concentration for each particle size are in the IS-2C, the most significant particulate is particle size 10 micrometer with the particulate concentration 0.1216 mg/m³, but it is below the TLV.

5.3. Measurement of Air Contamination Level in the Radioactive Waste Storage Facility of RWMI

Air Contamination Level in the Radioactive Waste Storage Facility of RWMI from January to June 2023

6. Conclusions and Acknowledgements

The conclusion of this poster is measuring results of the amount of particulate matter in the radioactive waste storage facility of RWMI comply with ISO 14644-1:2015 Class 7; the concentration result of particulate matter in the radioactive waste storage facility of RWMI is below the TLV determined in the Ministry of Manpower Regulation Number 5 of 2018 concerning Occupational Safety and Health in the Work Environment; the level of air contamination in the radioactive waste storage facility of RWMI is within the low contamination area limits according to the SAR document of RWMI; the dust control and usage of PPE, such as masks, must be continuously carried out considering the dangers of dust, which can cause health problems; and monitoring activities are urgently needed per activity period

Thanks to the Occupational Safety Division and Treatment Operations Division of RWMI for the participation and cooperation.