

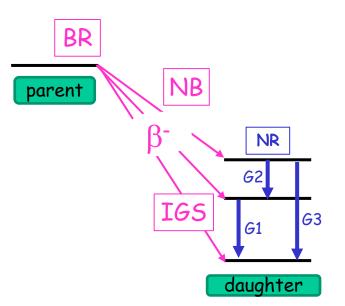
Proposal to retain "X" in column 79 of the G-record to preserve the list of transitions used for normalization with GABS

T. Kibèdi (ANU) with F.G. Kondev (ANL) and J. Chen (MSU)

Proposal to retain "X" in column 79 on Grecords

- ☐ The uncertainty of absolute gamma-ray intensities could be overestimated for transitions used for normalisation if they are calculated from the ENSDF files using NR, BR and RI
- ☐ GABS will calculate the absolute photon intensities, %IG correctly when it is used in the "F" mode
- □ Column 79 in the gamma-records will be blanked in the output file. Unless it is documented, the <u>list of transitions used for the normalisation is not preserved</u>

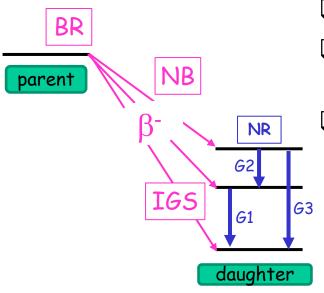
<u>Proposal</u>: retain "X" in column 79 and modify java-NDS to put a G-comment of: "g-ray used for normalisation" for each of these transitions


- □ Column 79 on the G-record is not used by any other program. Only GABS, java-GLSC and java-NDS need to be modified
- □ Why "X"? Replace "X" with "N" for normalisation

GABS - calculating absolute γ-ray intensities and decay branching ratios derived from decay schemes

NORMALISATION RECORD:

- NR: Multiplier for converting relative photon intensity (RI in the GAMMA record) to photons per 100 decays of the parent through the decay branch
- BR: Branching ratio multiplier for converting intensity per 100 decays through this decay branch to intensity per 100 decays of the parent nuclide.
- NB: Multiplier for converting relative β and EC intensities (IB in the B- record; IB, IE, TI in the EC record) to intensities per 100 decays through this decay branch.
- □ **IGS**: fraction (%) of direct β and EC feeding to the g.s.


GABS calculates

- ☐ Single Data Set: NR from RI, CC, TI (if given), BR and IGS
- Multiple Data Set: NR and BR from RI, CC, TI (if given), and IGS

GABS – calculating absolute γ -ray intensities and decay branching ratios derived from decay schemes

Simple decay scheme

1986Br21 uses G, the fraction of NOT populating the g.s.

GABS: Fractional g.s. feeding, IGS

$$G = \frac{100 - IGS}{100}$$

Definitions:

- ☐ Total transition intensity: TI=RI*(1+CC)
- \square Absolute γ -photon intensity: %IG=NR*BR*RI per 100 decays
- □ NR and BR not independent quantities:

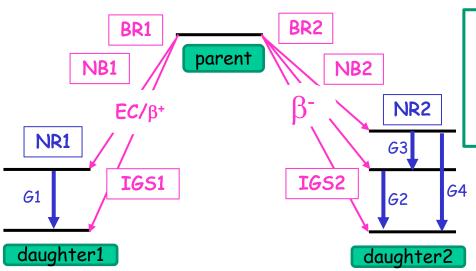
GABS: Calculates NR only!

$$TI = RI^*(1+CC)$$

$$N=NR^*BR$$

$$100 = BR \times [IGS + NR \times \sum_{i} TI(i)]$$

$$NR = \frac{100 - IGS}{100 \times \sum_{i} TI(i)}$$


$$\%IG = RI^*NR^*BR$$

GABS – calculating absolute γ -ray intensities and decay branching ratios derived from decay schemes

Complex decay scheme with g.s. feeding

Assuming all RI's are on the same scale or from the same experiment

$$100 = \sum_{j} BR(j) \times [IGS(j) + NR(j) \times \sum_{i} TI(i, j)]$$
$$\sum_{j} BR(j) = 1$$
$$BR(j) \times NR(j) = BR(k) \times NR(k)$$

GABS: Calculates NR(i) & BR(i)

<u>Caution:</u> Strong correlation between input parameters

New equations derived for uncertainties in NR, BR and %IG

$$BR(i) = \frac{\frac{100 - IGS(i)}{100} \sum_{j} TI(j, i)}{\sum_{k} \frac{100 - IGS(k)}{100} \sum_{j} TI(j, k)}$$

$$N=NR(i) \times BR(i) = \frac{\frac{100}{\sum_{k} \frac{100 - IGS(k)}{100} \sum_{j} TI(j, k)}}{\sum_{k} \frac{100 - IGS(k)}{100} \sum_{j} TI(j, k)}$$

Gamma-rays for normalisation

- Must feed to the ground state
- \square RI or TI must be given; DRI or DTI could be blank, but $\Sigma(\mathsf{DTI}(\mathsf{i})^2) > 0!$
- "X" in column 79
- Gamma-cascade: 'C' in column 80 on N-record
- □ IGS= on "2 N" record to specify α , β , EC decay branch feeding to g.s.; given in %.

New functions added

- -F NR and BR will be obtained from a fit (using G's marked with "X"; normal execution)
- -C Calculate %TI using NR & BR from the N-record
- -M Mark transitions going to the g.s. with "X" (DRI>0) or "Y" (DRI=0)

Usage

gabs -F ENSDF file

gabs? for quick help

Command: gabs?

======= GABS Version 12 [22-Apr-2020] ========

Usage with command line arguments:

GABS < Mode > < InputFile >

InputFile ENSDF file, G-rays marked with "X" in column 79
Blank DRI or DTI allowed, but sum[i] DTI(i)**2 should not be zero

Mode to control execution

- -F NR and BR (multiple data set only!) will be calculated from G's marked with "X" and direct feeding to the ground state (IGS) Output: report (*.rpt), new ensdf (*.new)
- Calculate TI using NR and BR from the N-record in the input file Output: report (*.rpt), new ensdf (*.new)
- -M Lists transitions going to the g.s. and RI>0 or TI>0 with "X" (DRI>0 or DTI>0) or "Y" (blank or limits in DRI or DTI)
 Total RI and TI for g.s. transitions also calculated
 Output: report (*.rpt), GABS input (*.in)