

STATUS REPORT ON NUCLEAR STRUCTURE AND DECAY DATA ACTIVITIES AT OAK RIDGE NATIONAL LABORATORY

24th Technical Meeting of the Nuclear Structure and Decay Data (NSDD) Network

Caroline Nesaraja, Michael Smith

Members:

- Michael Smith: PI Nuclear Data Program Nuclear astrophysics experiment and data
- Caroline Nesaraja: Research Staff ENSDF evaluator
- Larry Zhang: Student nuclear astrophysics data

Activities:

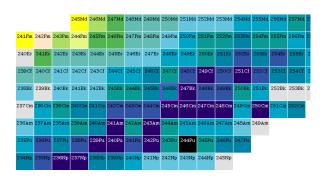
- Nuclear Structure Data (ENSDF)
- Nuclear Astrophysics Data

Nuclear Structure Data:

Mass Chain Evaluation

ORNL responsibility: A=241-249, A=69

Nuclear Structure and Nuclear Astrophysics Group **Nuclear Data Group**


About Research Areas ▼ Staff Publications

Mass Chain Current ENSDF Database (from NNDC website)

241	C.D. Nesaraja. NDS 130, 183 (2015)	(Lit cut-off Sept, 2015)
242	Y. A. Akovali. NDS 96, 177 (2002)	(Lit cut-off Sept., 2001)
243	C.D. Nesaraja & E.A. McCutchan. NDS 121, 695 (2014)	(Lit cut-off Sept., 2013)
244	C.D. Nesaraja : NDS 146, 387 (2017)	(Lit cut-off August, 2017)
245	E. Browne & J.K. Tuli. NDS 112, 447 (2011)	(Lit. cut-off June, 2010)
246	E. Browne & J.K. Tuli. NDS 112, 1833 (2011)	(Lit. cut-off Jan., 2011)
247	C. D. Nesaraja : NDS 125, 395 (2015)	(Lit. cut-off March, 2014)
248	M.J. Martin :NDS 122, 377 (2014)	(Lit. cut-off Sept., 2014)
249	K. Abusaleem: NDS 112, 2129 (2011)	(Lit. cut-off Dec. 2010)
69	C.D. Nesaraja : NDS 115, 1 (2014)	(Lit. cut-off July, 2013)

FTE (ENSDF): 0.8

Mass Chain	Evaluator	#Nuclides	Status
*137	Nesaraja	16	Editorial Review
246	Nesaraja	9	Submitted to NNDC
242	Martin/Nesaraja	9	Editorial Review

TOT	T	ΔD	DA'	TA 4	eu.	CC	TC

		Index			
nclide	Data Type	Page	Nuclide	Data Type	Pag
	Skeleton Scheme for A=137	4 1		¹³⁶ Ba(d,p)	. 20
In ₈₈	Adopted Levels	8		136Ba(α, 3He)	20
Sn ₈₇	Adopted Levels	i l		137Ba(γ,γ′)	21
	Adopted Levels	9		¹³⁷ Ba(n,n'γ) ¹³⁸ Ba(p,d),(³ He,α)	. 21
Sbes		10		Coulomb excitation	22
	Adopted Levels, Gammas	10	137La ₈₀ .		
	¹³⁷ Sn β decay ⁹ Be(²³⁸ U,X)	13 16	37 40	Adopted Levels, Gammas	22
Tegg	*Be(***U,X)	17		137 Ce ε decay (9.11 h)	24
1685	Adopted Levels, Gammas	17		¹³⁷ Ce ε decay (34.80 h) ¹³⁰ Te(¹¹ B,4nγ)	24
	¹³⁷ Sb β ⁻ decay	22		136Ba(p,p) E=7.0-12 MeV IAR	
	¹³⁸ Sb β n decay	26		136Ba(\alpha,t)	
	²⁴⁸ Cm SF decay	29		138Ba(p.2ny)	25
	⁹ Be(²³⁸ U,F)	32		140 Ce(u= 3nv)	26
[₈₄	Adopted Levels, Gammas	33 33	***	¹⁴⁰ Ce(p,α) E=17 MeV	26
	137 Te β decay	41	137Ce ₇₉ .	Adopted Levels, Gammas	
	²³⁹ Np SF decay	47		137 Pr & decay	
	²⁴⁸ Cm SF decay	49		137Ce IT decay (34.80 h)	. 29
	252Cf SF decay	53		124Sn(18O,5ny)	30
	²³⁸ U(n,Fγ)	57		130 Te(12 C. 5ny)	30
Ке ₈₃				136Ce(n,y) E=thermal	3
	Adopted Levels, Gammas	61 83		136Ce(n,γ) E=66 eV res	3
	138 I β n decay	103		136Ce(n,y) E=136 eV res 136Ce(n,y): E≈2 keV	3:
	248Cm SF decay	105		136Ce(n,y): E≈24 keV	3
	²⁵² Cf SF decay	108		137Ba(3He,3ny) E=27 MeV	32
	² H(¹³⁶ Xe,p)	110		138Ba(α,5nγ) E=70 MeV	3:
	9Be(136Xe, 8Bey)	111	137Pr ₇₈ .		3:
	¹³ C(¹³⁶ Xe, ¹² Cγ)	114		Adopted Levels, Gammas	
	136Xe(n,y) E=thermal	117		137Nd ε decay (HLxnv)	. 3
	¹³⁶ Xe(n,X) res ¹³⁶ Xe(d,p)	120	137Nd ₇₇ .	(11,111)	
	¹³⁶ Xe(α, ³ He)	122	60//	Adopted Levels, Gammas	3
	235U(n,Fγ)	123		¹³⁷ Pm ε decay	41
Ds ₈₂		126		137Nd IT decay (1.60 s)	- 4
-	Adopted Levels, Gammas	126		100Mo(40Ar,3ny)	
	¹³⁷ Xe β ⁻ decay	140		110Pd(30Si 3nv) 123Sb(19F 5nv)	43
	²⁵² Cf SF decay	149		124Te(16O.3ny)	4
	¹⁰ B(¹³⁶ Xe, ⁹ Beγ)	153		¹⁴⁰ Ce(α,7nγ)	. 45
	¹³⁶ Xe(p,p),(p,p') IAR	156	137Pm ₇₆ .		
	136 Xe(³ He,d) 138 Ba(μ ⁻ ,nγ)	158 159		Adopted Levels, Gammas	
				(HLxnv)	
	232 Th(136 Xe 231 Acv)	162	137 Sm ₇₅ .	(11,311)	
	²³⁸ U(¹² C,Fγ)	165	62 54475	Adopted Levels, Gammas	
Ba ₈₁				104Pd(37Cl,p3ny)	48
	Adopted Levels, Gammas		137Eu ₇₄ .		49
	137 Cs β decay	185		Adopted Levels, Gammas	49
	137Ba IT decay (2.552 min)	101		⁶⁶ Zn(⁷⁴ Se,Xγ) ⁹² Mo(⁵⁴ Fe,2αpγ)	49
	130 Te(11 B,p3ny)	193	137Gd.,	Mio(- · Fe, 2apy)	
	¹³⁶ Χe(α,3nγ)		64 0073	Adopted Levels	

NUCL	FAR	DATA	SHEET

Nuclide Da	ata Type	Page	Nuclide	Data Type	Page
145 U ₁₅₄ Ac 446 Pu ₁₅₂ Ac 244 45 Am ₁₅₁ Ac 246 46 Cm ₁₅₀ Ac 246 246 246 246 246 246 246	celeton Scheme for A=246 dopted Levels :tentative dopted Levels, Gammas $Pu(tp)$. $Pu(tp)$. $Pp(tp)$. dopted Levels, Gammas $Pn \not F$ decay. dopted Levels, Gammas $Am \not F$ decay. $Am \not F$ decay (3.0 min) $Am \not F$ decay (2.0 min) $Am \not F$ decay C of C of C of C C C of C	4 7 7 7 8 8 8 8 11 12 15 15 15 18 221 221 40 44 44 666 70 73 73 74	246Bk ₁₄₉ · · · 246Cf ₁₄₈ · · · · 246Fm ₁₄₆ · · · · 246Fm ₁₄₆ · · · · 246Fm ₁₄₆ · · · · 246Md ₁₄₅ · · · References · · · · · · · · · · · · · · · · · · ·	248 Cm(209 Bi, 211 Biy) Coulomb excitation Adopted Levels Adopted Levels 250 Fm α decay Adopted Levels 250 Fm α decay Adopted Levels 250 Md α decay Adopted Levels, Gammas 240 Md α decay Adopted Levels 250 Md α decay Adopted Levels 250 Md α decay Adopted Levels	. 80 . 81 . 81 . 82 . 83 . 84 . 85 . 85 . 89 . 90

A = 246

NUCLEAR DATA SHEETS

		Index	for A=242	
Nuclide	Data Type	Page	Nuclide	Data Type Page
242	Skeleton Scheme for A=242			²⁴¹ Am(n,γ):resonances 0-320 eV 128
²⁴² ₉₂ U ₁₅₀				²⁴¹ Am(n,γ):resonances 0-149 eV 132
	Adopted Levels, Gammas			²⁴¹ Am(d,p)
2425-	²⁴⁴ Pu(¹⁸ O, ²⁰ Neγ)			Coulomb excitation
²⁴² Np ₁₄₉ .			242	²⁴³ Am(d,t)
	Adopted Levels, Gammas		²⁴² Cm ₁₄₆ .	
²⁴² Pu ₁₄₈ .	²⁴² U β ⁻ decay			Adopted Levels, Gammas
94 Pu ₁₄₈	Adopted Levels, Gammas			²⁴² Am β decay (16.01 h) 157
	242Np β ⁻ decay (2.2 min)			²⁴² Bk & decay
	²⁴² Np β decay (2.2 min)	. 33		²⁴⁶ Cf α decay
	²⁴² Am ε decay (16.01 h)	40	²⁴² Bk ₁₄₅ .	Am(Bi, Foy)
	246 Cm α decay	. 43	97 DK 145	Adopted Levels
	²⁴¹ Pu(n, γ) E=th:primary γ's	. 45		²⁴⁶ Es α decay
	241 Pu(n, γ) E=th:secondary γ 's		²⁴² Cf ₁₄₄	
	²⁴² Pu(d,d')	49	98 144	Adopted Levels
	Coulomb excitation			²⁴² Es ε decay
	²⁴⁴ Pu(p,t)			²⁴⁶ Fm α decay
	244Pu(208Pb, 210Pby)	60	²⁴² Es ₁₄₃	
²⁴² Am ₁₄₇ .	,,		99 143	Adopted Levels, Gammas 171
95 147	Adopted Levels, Gammas	. 62		²⁴⁶ Md α decay (0.9 s) 173
	²⁴² Am IT decay (141 y)			²⁴⁶ Md α decay (4.4 s) 174
	²⁴¹ Am(n,γ) E=th:secondary γ's	. 93	²⁴² Fm ₁₄₂ .	
	241 Am(n, γ) E=th:primary γ 's	. 124	100 142	Adopted Levels 176

A = 242

A=137

September 2018: Submitted A=137

December 2019: Reviewer's comments received for A=137

August 2022: Resubmitted A=137

Between September 2019- August 2022 (3 years lag time)

- Extensive changes made to previous evaluation as requested by reviewer.
- Included numerical MTAS data from previous paper that was not available at initial submission
- New papers (~24 papers) have come out within the 3 years.

Lag time is due to the strict productivity matrix requirement by NNDC for new submission every year.

Other Activities related to Nuclear Data

1. Workshop for Applied Nuclear Data Activities (WANDA)

M. Smith: Co-Organizer and Chaired a session

200 registered participants

2. 15th International Conference on Nuclear Data for Science and Technology (ND2022)

C. Nesaraja: International Program Committee

418 registered participants

3. Nuclear Science Advisory- Nuclear Data Subcommittee

DOE/NSF Nuclear Science Advisory Committee

C. Nesaraja: NSAC-ND Subcommittee

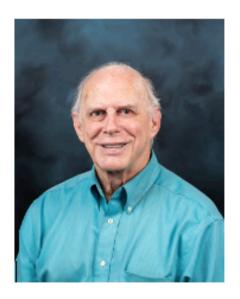
Nuclear Astrophysics Data:

Assessing uncertainties of reactions critical for nucleosynthesis in Stellar Explosions

Nova Light Curve RS Ophiuchi 8/2021 Fermi LAT daily RS Ophiuchi 8/2021 Fermi LAT 3 d

Nova RS Ophiuchi erupted in 8/2021

Thermonuclear Reaction Rate Uncertainties


- uncertainties of some reaction rates in STARLIB library were temperature averaged to work with a set of thermal profiles for nova outbursts
- these new rate uncertainties are currently being tested in an uncertainty quantification (UQ) analysis of nova nucleosynthesis
- a scheme to incorporate these uncertainties into the REACLIB standardized reaction rate library is being developed

Nuclear Astrophysics Data Needs Summarized

- nuclear data needs for nuclear astrophysics research were itemized and presented to
- NSAC-Nuclear Data subcommittee (June 2022)
- 2022 Low Energy Community Meeting (ANL, Aug 2022)
- Workshop on Uncertainty Quantification and Covariances (LANL, Oct 2022)

Murray Martin – Pioneer of Nuclear Data

In Memoriam Murray J. Martin, 1935-2022

The field of nuclear data lost a pioneer with the passing of Murray Martin on March 9, 2022.

Born in Regina, Canada in 1935, Murray Martin received his B.A. and M.A. in experimental physics from the University of Saskatchewan and his PhD in theoretical nuclear physics in 1962 from McMaster Univ. His thesis was entitled "A Study of the Low-Lying Excited Levels in the Even Lead Isotopes". He joined the NSF Data Project in 1962 in Washington, DC, and then followed that project as it moved to ORNL in 1964 as the Nuclear Data Project (NDP). Murray stayed with the NDP until his retirement in 1997 but resumed his work on a part-time basis in 2004 as a subcontractor to ORNL, which he continued until his last days.