

Transport Considerations for SMR Fuel Cycle and TNPPs

George Burnett Strategy and Security Advisor Nuclear Transport Solutions, United Kingdom

Nuclear Transport Overview

 Transport connects the nuclear fuel cycle

- Transport faces distinct challenges to that of a site
- Case by case approach is often necessary accounting for:
 - Safety
 - Security

UK Overview

Approval of 1 new reactor per year until 2030

• UK SMR expected early 2030s

Power Output (MWe)	470
Fuel Type	UO2 pellet
Fuel Enrichment	4.95% (max)
Refuelling Cycle (months)	18-24

 Potentially more licensed sites across UK (UK) SMR looking to deploy on previously licensed sites)

International insight from SMR fuel data...

Energy Well

- UO2 Triso (15%)
- Spent fuel transported loaded in reactor container

ELENA

- UO2 (15.2%) / MOX
- Transported loaded
 with fuel

MicroURANUS

- UO2 (12%)
 - Transported encapsulated with spent fuel after lifecycle eVinci
- UO2 Triso (up to 19.75%)
- Module transported loaded with fuel

Advances in Small Modular Reactor Technology Developments

A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 Edition

🖨 NTS

Safety Approach - SMR Applicability

Transport Security Approach - SMR Applicability

 Categorise material (type, form and quantity) adopt the Graded Approach.

Sabotage considerations (especially for back-end)

 Incorporate Design Basis Threat (DBT) / Threat Assessment

• Implement Defence in Depth

Delay Time > Response Time

Transport Gaps

- Transport safety substantiation of fuel characteristics:
 - SSR-6 Normal Conditions of Transport
 - Accident Conditions of Transport
- Data availability
 - Package Design Safety Report requirements
 - Package availability unknown

Inherent security characteristics? <u>Theft</u> vs <u>Sabotage</u>

How recoverable is the fissile material within the fuel type?

How attractive is this material to a malicious actor?

Potential to cause URCs?

How dispersible is this material?

Transportable Nuclear Power Plants (TNPPs)

Safety	Security
Applicability of safety assurances designed in module (+25yr lifecycle)	Fissile content i.e. categorisation, drives security requirement
Assurances of subcriticality safety features in transport	Sabotage vulnerability (use of Vital Area Identification (VAI) analysis for transport)
Testing against Accident Conditions of Transport (ACTs) – SSR 6	International transports will need appropriate security handovers
Regulatory changes over the core lifecycle	
Type R licensing for land transport?	

Thank you.

George Burnett Strategy and Security Advisor, Nuclear Transport Solutions <u>George.burnett@ntsglobal.uk</u>

