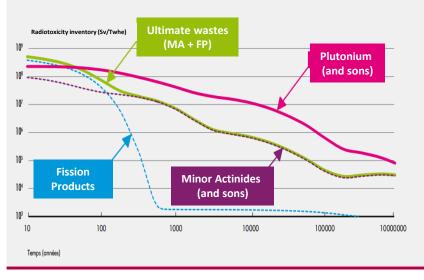


CEA

Molten Salt Reactor Technology

Opportunities of molten salt fuel for actinides management

P. ALLEGRE, C. CHABERT, P. GAUTHE, E. MARTIN-LOPEZ, J. MARTINET, L. MATTEO, M. MASCARON, <u>V. PASCAL</u>, J. SERP, L. TARDIEU, C. VENARD


> ORANO B. MOREL, I. MORLAES, G. SENENTZ, F. SOUVIGNET

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

FRENCH NUCLEAR FUEL AND WASTE MANAGEMENT STRATEGY

- French reactor fleet : Light water reactors with a mix of enriched uranium (UOX) and plutonium (MOX) fuels
- Spent fuel reprocessing strategy : "Pu valorization"
 - Pu from UOX reprocessing is used in LWR (MOX fuel strategy)
 - Pu is the main transuranic actinides produced and the main contributor to the long term radiotoxicity
 - ⇒ Mono-recycling strategy (Uranium savings, Waste management)
- In LWR (thermal spectrum effect) : Pu quality decreases and minor actinides production is enhanced
 - Fissile quality of Pu extracted from used MOX fuel is degraded and MA content is upper than in used UOX fuel
 - Americium is a major contributor to the long term radiotoxicity and thermal load of wastes (high impact on waste storage facility volume)
 - ⇒ Multi-recycling strategy of Pu is an open issue for LWR (R&D) + LWR not adapted to convert MA

RADIOTOXICITY EVOLUTION OF AN UOX FUEL (45GWD/T)

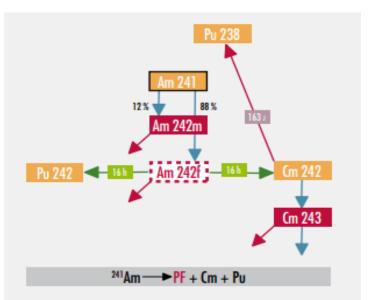
Reference : Séparation-transmutation des éléments radioactifs à vie longue, CEA, 2012

MINOR ACTINIDES INVENTORIES IN USED FUEL

Isotopes	UOX -REP 46 GWj/t (g/TWhe)	MOX-REP 48 GWj/t (g/TWhe)	
237Np	1700	390	
fotal Np	1700	390	
²⁴¹ Am 1160		8900	
243Am	540	5100	
Total Am	1700	14000	
244 Cm 190		2400	
245Cm	16	420	
Total Cm	210	2900	
MA lato	3600	17 000	

PLUTONIUM MANAGEMENT & TRANSMUTATION IN FAST REACTORS

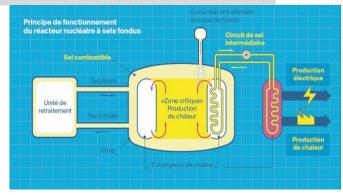
- Fast spectrum systems are well adapted to transuranic actinides transmutation by fission process
 - High energy neutrons enhance Pu regeneration cycle
 - High energy neutrons enhance transuranic fission reactions (cf. threshold fissions)
 - High energy neutrons minimize transuranic capture reactions responsible of minor actinides
 - ⇒ Fast spectrum : Stabilization of Pu inventory without quality degradation, weaker production of MA
 - ⇒ Various French programs around SFR technology, Pu management and transmutation since 80s

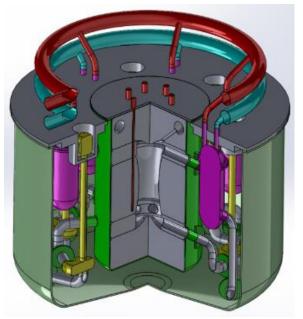

MA transmutation process is a time-consuming phenomena which rely on multi-recycling strategies (10 to 50y)

- Only a small part of MA fission at each cycle (weak fission cross sections in fast spectrum)
- Rely also on capture process for poorly fissile actinides which will form highly fissile actinides (ex: Am²⁴¹ -> Am²⁴²)
- One complete cycle time relies on irradiation, cooling, reprocessing and fuel fabrication time => ~ 15 years / cycle

Isotopes	MOX-REP 48 GWj/t (g/TWhe)	MOX-RNR 99 GWj/t (g/TWhe à l'équilibre)
237Np	390	460
Total Np	390	460
²⁴¹ Am	8900	2900
243Am	5100	680
Total Am	14000	3600
244Cm	2400	190
245Cm	420	18
Total Cm	2900	215
Total AM	17000	4 3 0 0

MINOR ACTINIDES INVENTORIES IN USED FUEL

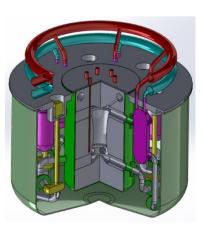

Reference : Séparation-transmutation des éléments radioactifs à vie longue, CEA, 2012



Molten salt reactor technology

- A high temperature liquid fuel flowing in a loop with no pressure
- High thermal safety feedback effects (fast liquid thermal expansion)
- Potential high source temperature for energy conversion systems
- Needs to manage fission gas and salt compositions
- Technological issues requiring R&D steps (materials, corrosion ...)
- Can Fast MSR enhance plutonium management or transmutation ?
 - Irradiation times no more limited by clad ageing
 => opportunity to increase fuel in-core irradiation time
 - Recycling does not need solid to liquid process and could use high temperature and radioactive recycling process (pyrochemistry)
 => opportunity to reduce cooling and reprocessing time
 - Unlike in SFR, MA do not degrade safety feedback effects
 => opportunity to increase molar fraction of actinides
 - Fast MSR easily accept various kind of isotopic vector
 => opportunity to increase fuel management flexibility
 - Last but not least, opportunity to harden neutron spectrum by removing oxygen present in current ceramic fuel

@Crédit : CNRS



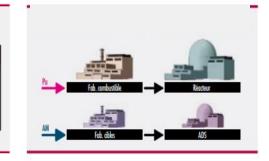
@Crédit : CEA, ARAMIS

MOLTEN SALT REACTOR AND NUCLEAR MATERIAL MANAGEMENT

- Which goals for a Fast Molten Salt Reactor with respect to bad quality plutonium coming from LWR MOX used fuel?
 - Full converter mode (Plutonium, Americium ...) •
 - Breeder/Isogeneration mode for Pu and Burning mode for Am ٠
 - Help to launch new regeneration cycle (Thorium cycle) .
- French context with respect to the « Full converter mode »
 - 2020 2022 : The ARAMIS project (CEA/ORANO) •
 - Small plutonium molten salt convertor ٠
 - Preliminary design studies and 1st chemical process studies ٠
 - Power of 300 MWth Consumption of \sim 130 kg Pu/y ٠
 - 2022 2025 : The ISAC project (CEA/CNRS/EDF/FRA/ORANO)
 - Americium and Plutonium molten salt transmuter ٠
 - Scenarii studies, preliminary design, 1st experiments (material ٠ corrosion, salt properties measurements, salt loops)
 - Context : French 2008 Law concerning the sustainable ٠ management of nuclear materials and wastes

@Crédit : CEA, PuCl3 synthesis

@Crédit : CEA, ARAMIS



MOLTEN SALT REACTOR AND NUCLEAR MATERIAL MANAGEMENT

- Public Technical Report on the sustainable management of nuclear materials
 - Issued by CEA in december 2012 with respect with the 2008 French Law
 - Various contributors : Andra, CEA, CNRS, French universities, AREVA, EDF
 - Goal : Evaluation of industrial perspectives of separation and transmutation of long lived radioactive isotopes as an alternative to waste storage
- Direction de l'énergie nucléaire D22 SÉPARATION-TRANSMUTATION DES ÉLÉMENTS RADIOACTIFS À VIE LONGUE DECEMBE 2012

-22

- Evaluation of various Gen IV technologies to incinerate actinides (from Pu to Cm)
 - Main technologies assessed : SFR and ADS (+ quick evaluation of GFR, LFR and MSR)

Comparison of MA transmutation efficiencies of ADS and SFR technologies MODE DE TRANSMUTATION Homogène Hétérogène (CCAM) ADS Teneur AM 1 % 2 % 4 % 10 % 20 %

 transmutation AM (kg/TWhe)
 0*
 5*
 14*
 3,3 (-0,5*)

 * capacité de transmutation d'actinides mineurs exogènes au réacteur

•

Capacité de

Reference : Séparation-transmutation des éléments radioactifs à vie longue, CEA, 2012

- Best MA transmutation efficiency in solid fuel concept : the ADS (thanks to high MA content)
- Opportunity for Fast MSR to combine high MA content and liquid fuel advantages (no limitations due to clad irradiation, no solid fuel fabrication, less time consuming recycling processes)

3,5

6 à 8

(2 à 4*)

95

MOLTEN SALT REACTOR AND NUCLEAR MATERIAL MANAGEMENT

- MA production of French reactor fleet (380 Twhe) :
 - Data coming from "Dossier 2012"

- Evaluation of number of dedicated reactors :
 - Hypothesis of "Dossier 2012" : 2 t/y
 - ADS 385 MWth "Dossier 2012" : 16 units
 - MSR with P > 1500 MWth and transmutation efficiency > 50 kg/Twhe : < 10 units
 - /!\ Quantities of Pu and Am in the reactor should be reasonable !
- Goal of ISAC project : Perform an evaluation of MSR potential with respect to transmutation of MA and compare it to "Dossier 2012" scenarii studies

Production of Minor Actinides				
LWR fueled with Uox	~ 1,3 t/y			
LWR fueled with MOX	~ 6,5 t/y			
SFR fueled with (ex)MOX – equilibrium state	~ 1,4 t/y			

Reference : Séparation-transmutation des éléments radioactifs à vie longue, CEA, 2012

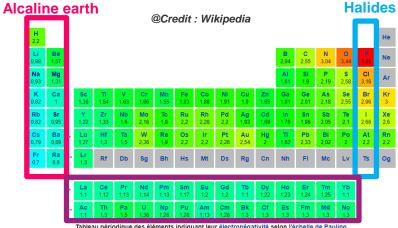
Number of reactor to transmute 2t/y of MA				
	50 kg/TWhe	75 Kg/TWhe	95 kg/Twhe	
300 MWth	39	26	21	
1500MWth	8	5	4	
3000MWth	4	3	2	

Plutonium hold up in reactor (t)			
ADS 385 MWth (« Dossier 2012 »)	~ 2,5 t		
ARAMIS 300 MWth (« Preliminary evaluation 2021»)	~ 3,5 t (0,9 t in core active zone)		
MSR 1500 à 3000 MWth	??		

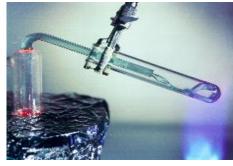
MOLTEN FUEL SALT CHOICE FOR A TRANSMUTER CONCEPT

- Base elements greatly depends on reactor objectives (transmuter, breeder ...) and nuclear cycle (thorium/plutonium)
- Various family of halides salts according the anions : F, Cl, Br, I ...
 - I and Br disqualified (low knowledge, too high capture XS)
- Criteria to choose base salt :

21/09/2022


- High solubility of fissile and target elements (Pu, Am)
- Compatibility with available recycling process (hydro/pyro)
- Low melting temperature
- Low moderation induces by base elements
- Salt stability under irradiation (low radiolysis, low activation, low production of corrosive elements for structures)
- Good thermal properties (thermal capacity, density ...)
- Good behavior in case of external aggression (O₂/water leaks, secondary coolant leak ...)

@Credit : CEA Marcoule, chloride salts



@Crédit : Los Alamos, chloride salt

Actinides et Lanthanides

@Crédit : Wikipedia, Molten FLiBe

•

MOLTEN FUEL SALT CHOICE FOR A TRANSMUTER CONCEPT

	Fluorides		Chlorides		
Neutron spectrum	Softer	\mathbf{X}	Faster	Ø	
Solubility of Pu	Low solubility	\mathbf{X}	Higher solubility	S	
Melting temperature	(often) Higher		(often) Lower	S	
Boiling temperature	(often) Higher		(often) Lower	\mathbf{x}	
Coolant properties	(often) Better Better experimental knowledge		(often) Lower Lack of experimental data		
Chemical process R&D feedback	R&D scale only		Reprocessing metallic fuel (INL) Reprocessing oxyde fuel (RIAR)		
Hydro reprocessing compatibility	No		Yes	Ø	
Operational Feedback	ARE, MSRE, Test loop facilities	(<u>No operational feedback</u> Test loop facilities (TerraPower) On going project : MCRE 2025 (Terrapower)	8	

But requires more technological and base

R&D programs to

increase reactor TRL

No operational feedback !

- Chlorides salts appears to be well adapted to :
 - Fast spectrum concept •
 - High actinides content (Pu, Am) ٠
 - Compatible with hydro reprocessing •
 - Cl salts for fast MSR project : Terrapower (USA), Elysium (USA), MOLTEX (GB)
- F salts for fast MSR project : MOSART (Russia) [= transmuter with very low actinide content] ٠

103 Energy (eV) Fig. 3. FS-MSR TRU burner spectra.

Vides

10⁰

10¹

10²

10⁻³ unit leth

10

10 10

10

10-8

10-9

10-1

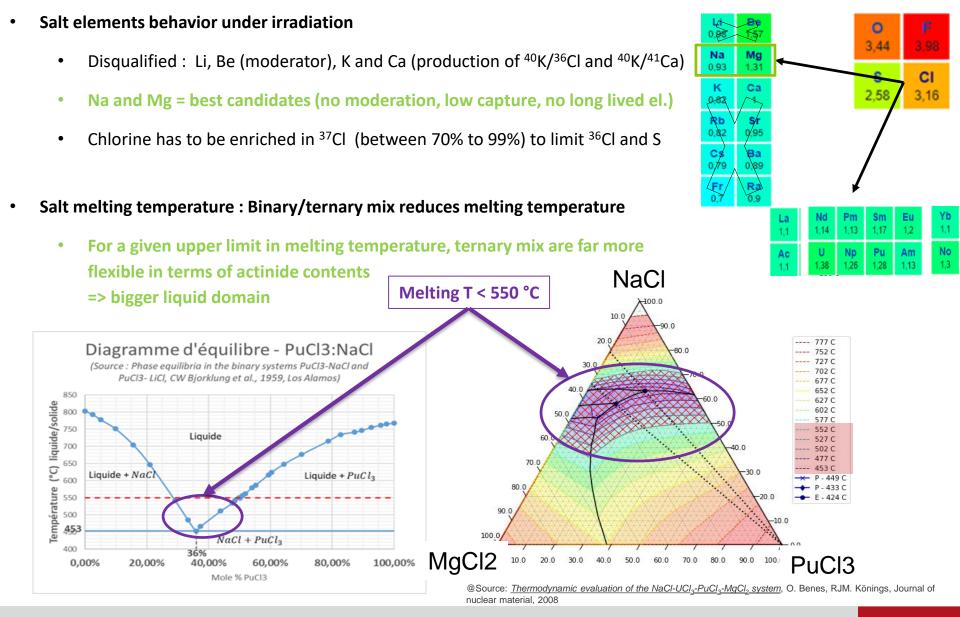
10

10

Chlorides

57NaF-27BeF2-157LiF-1(TRU)F3

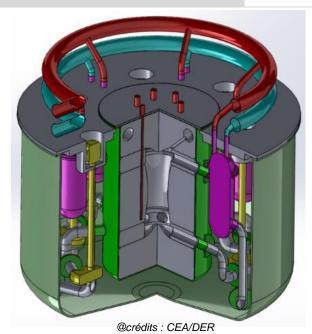
20NaF-55ZrF4-20PbF2-5(TRU)F3


62.6Na37Cl-37.4(TRU)37Cla

56.5Na³⁷Cl-41.5Mg³⁷Cl₂-2(TRU)³⁷Cl₃ 50Na³⁷Cl-41.5Mg³⁷Cl₂-8.5(TRU)³⁷Cl₃

50Na37CI-33.3Mg37Cl2-16.7(TRU)37Cl3

MOLTEN FUEL SALT CHOICE FOR A TRANSMUTER CONCEPT



21/09/2022

CC2 THE ARAMIS 300 MWTH MSR CONVERTOR PROJECT

- The ARAMIS Project : A small fast neutron actinide convertor (Pu, Am)
 - Ternary chloride salt without uranium (NaCl-MgCl₂-(Pu,Am)Cl₃)
 - Enriched chloride (³⁷Cl) to prevent excessive formation of ³⁶Cl and S
 - Loop type reactor confined in a vault security vessel
 - Magnesium oxyde reflectors with boron carbide neutron protection
 - Reactivity control devices
 - High performance shell and Tubes heat exchangers
 - Small core active zone with respect to total fuel volume (25%)

ARAMIS transmutation performance

- Preliminary results to consider with caution (start of ISAC project)
- At least 5 mol% of AmCl3 seems needed to reach 50 kg/Twhe
- Production of Cm

P = 300 MWth	ARAMIS Pu	ARAMIS Pu+ 2mol% Am	ARAMIS Pu+ 5mol% Am	ARAMIS Pu+ 8mol% Am
PuCl ₃ (mol%)	15	15	13	12
AmCl ₃ (mol%)	/	2	5	8
Pu (kg/Twhe)	-114	-103	-76	-64
Am (kg/Twhe)	+6	-11	-52	-73
Cm (kg/Twhe)	+0,5	+7	+26	+34

¹ based on preliminary evaluation - @crédits : CEA/DER/SPRC

- French nuclear fuel and waste management strategy
 - Treatment of UOx spent fuel and Pu recycling in LWR already implemented (MOX strategy)
 « Plutonium valorisation » = Uranium savings, Waste Storage Surface limitation
 Plutonium quality drop and enhanced production of americium when multiple recycling in LWR
 - Treatment of MOX spent fuel and Pu multiple recycling is studied as a medium (LWR) and long term objective (Fast reactors)
- Fast Molten Chloride Salt Reactor has the potential to use degraded Pu from MOX (as SFR)
 - Opportunities to enhance transmutation (in quantity and in processing time)
 - A lot of scientific and technical challenges : chloride salts are badly knowns, salt depletion, reprocessing strategy, fission products behaviour, material corrosion, thermal and irradiation damages, components handling, monitoring ...
 - New safety guidelines to invent
- ISAC Project aims to assess the potential of fast MSR to enhance French nuclear material management strategy
 - « France 2030 » program with 5 partners (CEA/CNRS/EDF/FRAMATOME/ORANO)
 - Scenarii studies to assess the potential benefits of MSR with respect to the French nuclear cycle
 - Preliminary reactor design and operating studies to consolidate the concept
 - First batch of experimental studies (salt synthesis, salt property measurements, salt loop, corrosion studies)

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr