

Overall Objectives

Technical Meeting on Back End of the Fuel Cycle Considerations for Small Modular Reactors

Vienna, 20-23 September 2022

Amparo Gonzalez Espartero

<u>a.gonzalez-espartero@iaea.org</u> Team Leader Spent Fuel Management Nuclear Fuel Cycle and Materials Section (NEFW-NFCMS) IAEA Nuclear Energy Department

Scope of the Spent Fuel Management Team

Each Type of Reactor has an Associated Nuclear Fuel Cycle

Technical Working Group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO)

20 Member States (Belgium, Canada, China, Finland, France, Hungary, India, Japan, RoK, Mexico, Netherlands, Romania, Russia, Spain, Sweden, Slovakia, UK, UAE, Ukraine, USA) and **Three International Organizations** (EC, OECD/NEA and WNA)

TWG-NFCO focuses on nuclear fuel cycle options with an emphasis on:

- Spent fuel management (storage, recycling and transportation)
- Innovative fuel cycles (multirecycling, minor actinides management and P&T of long-lived fission products)
- Nuclear materials management

Conclusions from the TWG-NFCO Session on SMRs Meeting in 2019

- "There is very good potential that small modular reactors (<300 MW) could be deployed over the next decade and the IAEA has several Sections looking into several different aspects of SMR deployment, including reactor concepts, engineering, economics, infrastructure, safety, etc.
- However, fuel cycle and in particular spent fuel management from SMRs does not appear to be a topic of investigation.
- While SMRs that are of similar design and use similar fuels as reactors that are in operation today (for example LWRs) would be able to leverage on lessons learned and experience already gained, other designs of reactors using different fuel types may face challenges.
- The next update of the Advances in Small Modular Reactor Technology Developments Report should consider technologies for managing SNF from SMRs including the back-end infrastructure that would be needed to support SMRs (e.g. transportation, storage, recycling, and disposal technologies)
- Nuclear fuel cycle aspects, in particular the back-end, should be integrated into all IAEA working groups that are looking at SMRs.
- The fuel cycle costs should be considered into economic investigations of SMRs."

IAEA on Booklet SMRs Designs

Advances in Small Modular Reactor Technology Developments

A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2020 Edition

IAEA SMR Booklet, 2020 Edition

Number of reactor designs:	72 (16 more than in the 2018-edition)				
Member states involved:	18 countries • Water-cooled Land Based • Water-cooled Marine Based • High Temperature Gas cooled • Fast Neutron Spectrum • Molten Salt • Microreactors • Test Reactors (HTGR only)				
Reactor types included:					
Distinguishing features	 Special coverage for the first time on fuel cycle approach, waste management and disposal plan 				
	 Insightful annexes with various charts and tables Microreactors 				
Status	Insightful annexes with various charts and tables Microreactors Published, limited hardcopies available				

Full Calls Assessed	SMR designs by type of coolants and technology characteristics						
Fuel Cycle Approach Categories	Water-cooled Reactors	HTGRs	Liquid-metal cooled and Fast Reactors	Molten Salt Reactors	Microreactors		
Open Fuel Cycle	CAREM, ACP100, SMART, NuScale, CANDU-SMR	HTR-PM, GTHTR300, PBMR, GT-MHR, Xe-100, SC-HTGR	EM ²	Integral MSR, SmTMSR-400	All designs		
Close Fuel Cycle	SHELF		BREST-300-OD, 4S, SVBR-100	FUJI, LFTR, CA Waste Burner (later generation), and MCSFR	eVinci®, MoveluX		
Longer Refuelling Cycle > 24 months	SMART, HAPPY200, ABV- 6M, RITM-200, SHELF	HTR-PM (online refuelling), GTHTR300	MicroURANUS, W-LFR, SEALER and EM ²	CA Waste Burner			
Enrichment < 5%	CAREM, NuScale, VBER, NUWARD and ACPR50S			Integral SMR Stable Salt Reactor	MoveluX		
5% ≤ Enrichment ≤ 15%		HTR-PM, PBMR, GTHTR300	BREST-300-OD, 4S, EM ² , ARC100, Superstar	ThorCon	Energy Well		
Enrichment > 15%	KLT-40S, RITM, SHELF, ABV-6M	MHR-T, MHR-100, GT-MHR, SC-HTGR, Xe-100,	SVBR, SEALER, LFR-TL-X, W-LFR	ThorCon	eVinci [®] , Aurora, MMR		
Spent Fuel Processing and Conditioning			BREST-300-OF, 4S, SVBR	SmTMSR-400			
Use of Thorium-cycle and/or Plutonium Disposition		HTMR-100, GTHTR300, GT-MHR, SC-HTGR, and possibly for all	LFR-AS-200, Superstar	FUJI, LFTR, Integral MSR, CA Waste Burner, ThorCon, Moltex SSR and SmTMSR-400			
Use of Spent Fuel as Fuel		GTHTR300	BREST-300-OD	Moltex SSR and CA Waste Burner			

Consultancy Meeting on Backend of the Fuel Cycle Considerations for Small Modular Reactors Small Modular Reactors in Canada

Consultancy Meeting to Develop Programmatic Activities on the Back End Technological Options for the Fuel Cycles of Small and Modular Reactors

Information Sheet

17 experts from

- Canada
- China
- Denmark
- France
- India
- JRC (EC)
- Japan
- Romania
- Russia
- UK
- USA

- · SMR Roadmap and Action Plan by NRCan.
- · Significant to off-grid energy applications remote communities, mining operations, etc.
- · Technologies under development by private vendors.
- · SMRs Once through cycle (near term), partially or fully closed fuel cycle (long term) that would require reprocessing.
- Requirements of enriched fissile materials, such as LEU and HALEU instead of natural U.
- Technology selections influenced/driven by market pull.

INCOMPANY

Canadan Nacional Laborations Naciona

As part of its Advanced Modular Reactor (AMR) Research and Development Programme, the UK Government has declared an intention to build a HTGR demonstration reactor in the UK: To prove the potential of advanced reactors

development of a small HTGR concept as part of its AMR Feasibility and Development Project-phase 2.

This presentation provides an overview of relevant issues when considering how to manage spent fuel from fleet deployment of a new reactor technology.

2030s, at the latest The government is also supporting concept

CM SMR Back-end

Identified Spent Fuels from SMR Types

single graphite bloc

- LWR-type SMRs (Land based): Enrichment levels of below 5% are similar to conventional PWRs
- LWR-type SMRs (Marine based): Enrichment levels up to 20% (HALEU)
- HTGR-type SMRs: Pebble Beds/Prismatic Limited Backend Experiences
- Advanced Reactors (Fast Neutron SMRs): New fuel types introducing a new spent fuel characterisitics/multirecycling processes
- Molten Salt SMRs: Nuclear fuel dissolved in melted chloride/fluoride fuel salts. Recycling of fissile material and managing salt mixtures containing all fission products is a challenge

Technical Meeting on Backend of the Fuel Cycle Considerations for Small Modular Reactors

Technical Meeting on Back End of the Fuel Cycle Considerations for Small Modular Reactors

IAEA Headquarters, Vienna, Austria and virtual participation via Cisco Webex

Information Sheet

~ 120 Nominated Experts from 36 Member States and 2 International Org. (EC and OECD/NEA)

> ~ 40 Presentations and Extended Abstracts

Overall Objectives of the TM

- To share technical information on the management of spent nuclear fuel from the operation of SMRs
- To anticipate related opportunities/challenges/issues
- To identify infrastructures and knowledge gaps
- To identify the potential ways to move forward in addressing them in the near, medium, and long term

Expected Outputs

- To prepare a report compiling **extended abstracts/technical papers** capturing the state of the art, discussions during the event, and recommendations for future activities on SMR nuclear fuel cycles from a spent fuel management perspective
- Focused on:
 - potential synergies among different SMRs' fuel cycle options
 - gaps with the current technologies in place
 - opportunities/challenges for the different stages of the back end of the fuel cycle
 - enablers for implementation
 - new infrastructures and R&D needs

Extended abstracts/full papers guidance

- 1. Foreseen options for SFM for the SMR type(s) of interest in the country
- Integration of the foreseen SMRs nuclear fuel cycle strategy in the current nuclear fuel cycle strategy for LWRs with the focus on spent fuel management (for countries with a nuclear power programme; and for countries thinking of developing different SMR technologies, integration of various systems will be required)
- 3. Gaps and opportunities between the foreseen strategy for SMRs and the current one for LWRs and how might fuel cycle strategy be modified by the adoption of SMRs
- 4. Needs and enablers for developing and implementing the foreseen strategy for managing SMRs spent fuel, including needs in infrastructures (at national and/or international level)
- 5. R&D needed to support the development and implementation of the foreseen strategy for managing SMRs spent fuel
- 6. Challenges and issues for SMRs spent fuel transportation

Discussion Points for the Break Out Sessions on Thursday

Sessions in the Agenda

- Tuesday 20: International perspective
 - IAEA setting the scene with activities in different related fields (SMR designs, spent fuel management, safety, security, economics, safeguards, transport, etc)
 - OECD/NEA
- Wednesday 21: Member States Approaches (continuing Thursday morning)
- Thursday 22: Three break out sessions by technologies LWRs (land and marine), HTGRs, ARs + MSRs
 - to identify and discuss gaps/challenges/opportunities for implementing Back End of the Fuel Cycle of SMR Technologies
- Friday 23: General discussions on
 - Conclusions from Break Out Sessions
 - General Discussion on cross-cutting issues
 - Potential future IAEA activities, collaborations and path to move forward

Material for Break Out Sessions

Back End of Nuclear Fuel cycle Options Currently Implemented

Integration of a fleet of new type of SMRs

Gaps/ Opportunities/ Challenges	Wet Storage	Dry Storage	SNF Recycling	Disposal	Transportation	Infrastructures/ Enablers	Nuclear Materials Involved	R&D needs

Chairperson and Co-Chairs/Reporters

- Chairperson: Ms Cecile Evans (France)
- Co-Chairs/Reporters:
 - Mr Suren Bznuni (Armenia): Session on Tuesday after lunch break with IAEA information and International Perspectives
 - Mr Andrea Salvatores (France): Session on Wednesday morning until lunch-break
 - Mr David Hambley (UK): Session on Wednesday afternoon from lunch-break to adjourn
 - Ms Fatmah AlMomani (Jordan): Session on Thursday morning until the breakout sessions
 - Mr Jorge Narvaez (USA): Session on Thursday afternoon after the coffee break, when we all will gather after the break out sessions

