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Summary

Neutrons + *N reactions as a test case

Known levels and level densities

Going from R-matrix theory to Hauser-Feshbach models

How to check the approximation used

= Try making R-matrix parameters to reproduce optical results,
at least in middle range when resonances overlap more.
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Known levels in n+N14 = N15* reactions
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Neutron ‘total cross-section’ data from EXFOR

Cross sections for n scattering on N14. Units: mb and MeV, for total outgoing channel, with ENDF/B-8.0
Combined EXFOR data
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Line from ENDF/B-VIII.O

= Pronounced resonances < 4 MeV.
= Smoother > 4 MeV: unresolved resonances with higher densities

= Cannot search to fit individual resonances to this data > 4 MeV.
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Level Densities: levels per MeV

Cumulative level densities in N15*
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R-matrix parameters

1. Diagonalize Hamiltonian inside R-matrix radius a
— (with fixed ¥ /Y’ to make orthonormal basis).

2. Energy eigenvalues ¢, for level p.

3. eigenstate wave functions 1, (1)

4. Wfvaluesatr =a: y,, =

l/)pa (a)

200
— Called ‘reduced width amplitudes’

aHt

o

5. Formal width T,y = 2 y5,P, .  Penetrability P, = Im (=

6. Total width T}, = ¥y g
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Exact R-matrix theory

For each specific spin and parity J{;, the multichannel R matrix with N
poles and channels « is

N
YpaVpa!
Raa’(E) = Z ep _pE . (1)
p=1 P

Using shift functions S and penetrability P, define shift and width matrices

A

Apq + %qu = Z')’pa[sa + 1Pa]Vga (2)
(0%

Construct the symmetric level matrix A is

(A )pg = bpgler— E) — Apy — iiqu ; (3)
that is
E — 61 + All + Fll A12 + %f‘lz ' oo -
A=-— Aoy + 4 F21 E—ex+ A+ 35T ... ’ (4)

The exact multi-channel multi-level S matrix is

Sora = [Sua+1Y THRAWTYS | Qu. (5)
AN

. . (el
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Single-level Breit-Wigner approximation (SLBW)

Neglect the off-diagonal terms of f‘pq for all level interference terms:

1
A, =6 . — 6
Pq pqep—E—App— %I‘pp ( )

from which the angle-integrated cross section to channel o from « is

Y F F !
oo Jic 3 E) = E , cror
g ( tot ) k2 thot . (E . Ep)2 + 1—\12)/4 (7)

for spin coefficient g;,.,. Each level p has a total width of I'), = > _ Tqp.
The p-averaged cross section for average level spacing D is

o Coplarp\ 20w (Ca) (L) 2
(GQ,Q(E)> - k2 thot< I'\ > D kz thot <F> D (8)

p

where the average sum (I') = > _(Ta).
The reaction cross-section: sum of all outgoing channels: or = )/ 0o/a(E).
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Connecting widths with optical potentials

The reaction cross-section from Eq. (8), the sum of all outgoing channels, is

s 2m(l’,,
OR = ﬁg-]tot # (9)

This reaction cross section should equal the reaction cross section og
given by a one-channel optical potential and its S-matrix elements,

T
on = Ty G (11857 (10)
1
arising from the flux leaving an entrance channel «;.
Comparison of two expressions (9) and (10) gives

2m(Ta) D
opt 2 _ @ .\ =

L (1= [SEP), (11)

Alternative expression (Simonius, 1974) giving larger widths when [S| < 1:

(o) =~ In(ISLP) (12)
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Checking the approximation used

1. The Single-level Breit-Wigner approximation

a) Check effects of off-diagonal terms
b) Check neglect of interferences for diagonal terms

2. Check that the width-fluctuation correction W,,,, is near 1 in

() 0

3. Check conversion from optical |S, |? to transmission coef T,

4. Check overall Hauser-Feshbach models give cross-sections
close to those from R-matrix models,
at least in some transition region when both should work ok.
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First: Compare R-matrix with HF cross-sections

Use a range of known levels from RIPL3
— Total cross-section has many resonances.

Preliminary R-matrix fit to make plausible distributions.

Use Koning-DelaRoche global optical potential for n+*N

Use YAHFC Hauser-Feshbach code to also predict cross-sections

Compare:

— Total cross-sections for neutrons: reaction + elastic

— Transfer cross-sections to a + 1B

— Transfers to excited state (measured by their gamma decays)
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Hauser-Feshbach models

The reaction cross-section from Eq. (8), the sum of all outgoing channels, is

T 27 ([,
on = M0, e ©

This reaction cross section should equal the reaction cross section og
given by a one-channel optical potential and its S-matrix elements,

s
R = 23 9ae (1 ISEETI) (10)

arising from the flux leaving an entrance channel «;.
Comparison of two expressions (9) and (10) gives

1 g = 278a) (11)

So we calculate transmission coefficients as

To=1-IS2&I% (12)

ax
in terms of which the channel cross sections of Eq. (8) become

= T Tl
(oara(Jior; E)) = 22 ot S T (13)

The Hauser-Feshbach branching ratios here are

To

By = =%
Za” 7;//

(14)
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Hauser-Feshbach cross-sections (smooth!)

Inelastic (n,n’)

At higher energies
even more inelastic
channels.

Fusion neutrons
at 14 MeV will
require all these
inelastic channels
and more !

Cross sections (mb)
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Hauser-Feshbach transfer cross-sections

Transfers 500

(n,a), (n,p), (n,t),

(n,d) 400 | f
Many larger than =

(n,n’) i’/ 300 |
Fusion neutrons z o

at 14 MeV will S

require all these

transfer channels 100 ]
and more |
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Hauser-Feshbach width-fluctuation corrections

Dashed lines use

WFC from Moldauer
PRC (1976), NPA (1980).

For neutrons, usually
supposed to be small
above 1 MeV, but
here we see effects
up to 9 MeV.
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Generate R-matrix poles
from optical potential and level densities

= Start from optical potential for projectiles n, p, a (etc)

= Choose which nuclear excited states to include (x1, x4, ..., x12)
= Use a level-density to generate spacings D up to 12 MeV.

= Find partial widths by A: (I'y) = —22 In(|S°P*|?)

= Or by method B:: (T,) = _(1 — |SoPt|2)

= Or Ap, Bp: reduced width amp//tudes have gaussian fluctuations
= Generate discrete levels with above statistics (like Dicebox)

= Find exact cross-sections from R-matrix theory

= Compare with HF results after smoothing (e.g. 1 MeV Gaussian)
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Reaction cross-sections from R-matrix method B

Reaction cross—section from R-matrix approach B
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Comparing width methods A and B

R-matrix reaction cross—sections for methods A and B

1500 ‘ ‘ ‘ ‘ R-matrix A method: y
— Optical potential magnitude normal N(O,mean):
—— A N15n-na-x4
— AN1i5n-na-x12 Porter-T.
—— A N15n-x12
B N15n-na-x4 R-matrix B method: y
B N15n-na-x12 . .
1000 B N15n—x4 magnitude fixed to mean,

B N15n—x12 sign random

Method A gives reaction cross
section nearest to that of
the optical potential.

Cross section (mb)

500

But strange short-coming
at low energies.
May be compound-elastic.
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Channel Comparisons: HF and full R-matrix (A,B)
- (n,a) channel

15N(n,a)11B transfer to ground state
Most accurate 500 ‘ ‘ ‘ ‘ ‘ ‘
are expected to be —— HF with no WFC
HF+WFC and —— - HF with WFC
—— N15n-x12: A method |y| constant
Ap methods. 400 — N15n-x12: Ap method (Porter-Thomas)

N15n-x12: B method |y| constant
N15n-x12: Bp method (Porter- Thomas)

These two (blue and g 300 | |
black-dashed) agree  §
the best, at least 3
up to~ 5 MeV. @ 200 -
©)

R-matrix A method:
Y magnitude normal 100
N(0,mean): Porter-T.

. O = | | | | | | | | | | [
R-matrix B method: 0 2 4 6 8 10 12 14

y magnitude fixed Incident neutron energy (MeV, lab)

to mean, sign random
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Channel Comparisons:
- (n,n,) channel

HF and full R-matrix (A,B)

15N(n,n,)11B transfer to ground state

HF with no WFC 7
HF with WFC

N15n-x12: A method
N15n-x12: Ap method 7
N15n-x12: B method
N15n-x12: Bp method

Most accurate
are expected to be 140 -
HF+WFC and
Ap methods. 120 -
HF and Ap methods = 100
(blue and black) £
agree the best, at S 8-
leastupto~7 MeV. 2
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large effects here. 40 +
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Summary

= Possible to compare full R-matrix and Hauser-Feshbach models
in transition region of unresolved resonances

= Necessary to include all excited residual states up to incident
energy. This is well-known for HF, but not so well for R-matrix.
(Needed anyway to predict gamma production cross-sections)

= Makes large R-matrix model: | use tensorflow of GPUs.

= Demonstrate best comparison agreements when including
— Width-fluctuation corrections in HF (up to higher energies)
— Full Porter-Thomas statistics of reduced width amplitudes y,,.

= These are well known for high-A targets, but here for N15 too.
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